Eigenvalue bifurcation in multiparameter families of non-self-adjoint operator matrices

被引:7
|
作者
Kirillov, O. N. [1 ]
机构
[1] Tech Univ Darmstadt, Dept Mech Engn, Dynam & Vibrat Grp, D-64289 Darmstadt, Germany
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2010年 / 61卷 / 02期
关键词
Operator matrix; Non-self-adjoint boundary eigenvalue problem; Keldysh chain; Multiple eigenvalue; Diabolical point; Exceptional point; Perturbation; Bifurcation; Stability; Veering; Spectral mesh; Rotating continua; DISTRIBUTED NONCONSERVATIVE SYSTEMS; PERTURBATION-THEORY; KELDYSH CHAINS; STABILITY; DISSIPATION; INSTABILITY; FRICTION; COLLAPSE; POINTS;
D O I
10.1007/s00033-009-0032-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider two-point non-self-adjoint boundary eigenvalue problems for linear matrix differential operators. The coefficient matrices in the differential expressions and the matrix boundary conditions are assumed to depend analytically on the complex spectral parameter lambda and on the vector of real physical parameters p. We study perturbations of semi-simple multiple eigenvalues as well as perturbations of non-derogatory eigenvalues under small variations of p. Explicit formulae describing the bifurcation of the eigenvalues are derived. Application to the problem of excitation of unstable modes in rotating continua such as spherically symmetric MHD alpha(2)-dynamo and circular string demonstrates the efficiency and applicability of the approach.
引用
收藏
页码:221 / 234
页数:14
相关论文
共 50 条