Manifold microchannel heat sink topology optimisation

被引:54
作者
Gilmore, Nicholas [1 ]
Timchenko, Victoria [1 ]
Menictas, Chris [1 ]
机构
[1] Sch Mech & Mfg Engn UNSW, Sydney, NSW 2052, Australia
关键词
Manifold; Microchannel; Heat sink; Electronics cooling; Topology optimisation; ELECTRONICS; DESIGN; MICROFLUIDICS; DEVICE; FLOW;
D O I
10.1016/j.ijheatmasstransfer.2021.121025
中图分类号
O414.1 [热力学];
学科分类号
摘要
This study generates novel manifold microchannel heat sink structures for high heat flux cooling, by applying topology optimisation within a multi-objective 3D conjugate heat transfer model. Compared to rectangular manifold microchannels, the proposed structures reduce pressure drop by 17 % (7.2 kPa - 6.0 kPa) by suppressing stagnation regions, and a more substantial 79.2 % (5.8 kPa - 1.2 kPa) by also limiting nozzle constrictions. This structure simultaneously reduces thermal resistance by 22.4 % (0.148 W/cm(2)K - 0.115 W/cm(2)K) by introducing intricate pins and constrictions, which augment jet impingement and counteract streamwise heating of the fluid. This study reveals some topology optimisation deficiencies: manual tuning of conditions, penetration of fluid to solid, and discrete geometry extraction. However, the resulting structures demonstrate how the topology optimisation process may leverage advances in additive manufacturing to extend the capabilities of high heat flux coolers. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:13
相关论文
共 48 条
[1]   Large scale three-dimensional topology optimisation of heat sinks cooled by natural convection [J].
Alexandersen, Joe ;
Sigmund, Ole ;
Aage, Niels .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2016, 100 :876-891
[2]  
[Anonymous], 2015, COMSOL MULTIPHYSICSO, DOI [10.1017/ CBO9781107415324.004, DOI 10.1017/CBO9781107415324.004]
[3]   Topology optimization of microfluidics - A review [J].
Chen, Xueye .
MICROCHEMICAL JOURNAL, 2016, 127 :52-61
[4]   A review about the engineering design of optimal heat transfer systems using topology optimization [J].
Dbouk, T. .
APPLIED THERMAL ENGINEERING, 2017, 112 :841-854
[5]   Topology Optimization, Additive Layer Manufacturing, and Experimental Testing of an Air-Cooled Heat Sink [J].
Dede, Ercan M. ;
Joshi, Shailesh N. ;
Zhou, Feng .
JOURNAL OF MECHANICAL DESIGN, 2015, 137 (11)
[6]   Optimization and Design of a Multipass Branching Microchannel Heat Sink for Electronics Cooling [J].
Dede, Ercan M. .
JOURNAL OF ELECTRONIC PACKAGING, 2012, 134 (04)
[7]   Density based topology optimization of turbulent flow heat transfer systems [J].
Dilgen, Sumer B. ;
Dilgen, Cetin B. ;
Fuhrman, David R. ;
Sigmund, Ole ;
Lazarov, Boyan S. .
STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2018, 57 (05) :1905-1918
[8]   Multi-objective optimal design of microchannel cooling heat sink using topology optimization method [J].
Dong, Xin ;
Liu, Xiaomin .
NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 2020, 77 (01) :90-104
[9]   A review of data center cooling technology, operating conditions and the corresponding low-grade waste heat recovery opportunities [J].
Ebrahimi, Khosrow ;
Jones, Gerard F. ;
Fleischer, Amy S. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2014, 31 :622-638
[10]   A novel high performance, ultra thin heat sink for electronics [J].
Escher, W. ;
Michel, B. ;
Poulikakos, D. .
INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2010, 31 (04) :586-598