Logarithmic Schr?dinger equation and isothermal fluids

被引:6
|
作者
Carles, Remi [1 ]
机构
[1] Univ Rennes, CNRS, IRMAR UMR 6625, F-35000 Rennes, France
关键词
Logarithmic Schr?dinger equation; isothermal fluids; GLOBAL WEAK SOLUTIONS; NAVIER-STOKES EQUATIONS; NONLINEAR SCHRODINGER-EQUATION; CLASSICAL QUANTUM-MECHANICS; SMOOTH SOLUTIONS; EULER EQUATIONS; MULTI-SOLITONS; KORTEWEG; EXISTENCE; SYSTEM;
D O I
10.4171/EMSS/54
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the large time behavior in two types of equations, posed on the whole space Rd : the Schrodinger equation with a logarithmic nonlinearity on the one hand; compressible, isothermal, Euler, Korteweg and quantum Navier-Stokes equations on the other hand. We explain some connections between the two families of equations, and show how these connections may help having an insight in all cases. We insist on some specific aspects only, and refer to the cited articles for more details, and more complete statements. We try to give a general picture of the results, and present some heuristical arguments that can help the intuition, which are not necessarily found in the mentioned articles.
引用
收藏
页码:99 / 134
页数:36
相关论文
共 50 条
  • [21] Weak semiconvexity estimates for Schrödinger potentials and logarithmic Sobolev inequality for Schrödinger bridges
    Conforti, Giovanni
    arXiv, 2022,
  • [22] Multi-bump solutions for the nonlinear magnetic Schrödinger equation with logarithmic nonlinearity
    Wang, Jun
    Yin, Zhaoyang
    MATHEMATISCHE NACHRICHTEN, 2025, 298 (01) : 328 - 355
  • [23] Weak semiconvexity estimates for Schrödinger potentials and logarithmic Sobolev inequality for Schrödinger bridges
    Conforti, Giovanni
    PROBABILITY THEORY AND RELATED FIELDS, 2024, 189 (3-4) : 1045 - 1071
  • [24] Specificity of the Schrödinger equation
    Cetto A.M.
    la Peña L.
    Valdés-Hernández A.
    Quantum Studies: Mathematics and Foundations, 2015, 2 (3) : 275 - 287
  • [25] Hyperbolic Schrödinger equation
    Zheng Z.
    Xuegang Y.
    Advances in Applied Clifford Algebras, 2004, 14 (2) : 207 - 213
  • [26] Multi-bump positive solutions for a logarithmic Schr?dinger equation with deepening potential well
    Claudianor O.Alves
    Chao Ji
    ScienceChina(Mathematics), 2022, 65 (08) : 1577 - 1598
  • [27] Schrödinger equation in dimension two with competing logarithmic self-interactionSchrödinger equation in dimension...A. Azzollini et al.
    Antonio Azzollini
    Pietro d’Avenia
    Alessio Pomponio
    Calculus of Variations and Partial Differential Equations, 2025, 64 (4)
  • [28] Analytical study of nonlinear models using a modified Schrödinger's equation and logarithmic transformation
    Zhu, Chaoyang
    Idris, S. A.
    Abdalla, M. E. M.
    Rezapour, S.
    Shateyi, S.
    Gunay, B.
    RESULTS IN PHYSICS, 2023, 55
  • [29] Wellposedness of a Nonlinear, Logarithmic Schrödinger Equation of Doebner–Goldin Type Modeling Quantum Dissipation
    P. Guerrero
    J. L. López
    J. Montejo-Gámez
    J. Nieto
    Journal of Nonlinear Science, 2012, 22 : 631 - 663
  • [30] Existence of multiple solutions for a Schrödinger logarithmic equation via Lusternik-Schnirelmann category
    Alves, Claudianor O.
    da Silva, Ismael S.
    ANALYSIS AND APPLICATIONS, 2023, 21 (06) : 1477 - 1516