The dimer-monomer equilibrium of SARS-CoV-2 main protease is affected by small molecule inhibitors

被引:57
|
作者
Silvestrini, Lucia [1 ]
Belhaj, Norhan [2 ]
Comez, Lucia [3 ]
Gerelli, Yuri [2 ]
Lauria, Antonino [4 ]
Libera, Valeria [5 ]
Mariani, Paolo [2 ]
Marzullo, Paola [4 ]
Ortore, Maria Grazia [2 ]
Piccionello, Antonio Palumbo [4 ]
Petrillo, Caterina [5 ]
Savini, Lucrezia [1 ]
Paciaroni, Alessandro [5 ]
Spinozzi, Francesco [2 ]
机构
[1] Marche Polytech Univ, New York Marche Struct Biol Ctr NY MaSBiC, Dept Life & Environm Sci, I-60131 Ancona, Italy
[2] Marche Polytech Univ, Dept Life & Environm Sci, I-60131 Ancona, Italy
[3] Univ Perugia, Dept Phys & Geol, CNR IOM, I-06123 Perugia, Italy
[4] Univ Palermo, STEBICEF Dept, I-90128 Palermo, Italy
[5] Univ Perugia, Dept Phys & Geol, I-06123 Perugia, Italy
关键词
SMALL-ANGLE SCATTERING; INDUCED-FIT DOCKING; ACCURATE DOCKING; 3C-LIKE PROTEASE; FREE-ENERGY; PROTEINASE; DYNAMICS; PRESSURE; GLIDE; DISSOCIATION;
D O I
10.1038/s41598-021-88630-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The maturation of coronavirus SARS-CoV-2, which is the etiological agent at the origin of the COVID-19 pandemic, requires a main protease M-pro to cleave the virus-encoded polyproteins. Despite a wealth of experimental information already available, there is wide disagreement about the M-pro monomer-dimer equilibrium dissociation constant. Since the functional unit of M-pro is a homodimer, the detailed knowledge of the thermodynamics of this equilibrium is a key piece of information for possible therapeutic intervention, with small molecules interfering with dimerization being potential broad-spectrum antiviral drug leads. In the present study, we exploit Small Angle X-ray Scattering (SAXS) to investigate the structural features of SARS-CoV-2 M-pro in solution as a function of protein concentration and temperature. A detailed thermodynamic picture of the monomer-dimer equilibrium is derived, together with the temperature-dependent value of the dissociation constant. SAXS is also used to study how the M-pro dissociation process is affected by small inhibitors selected by virtual screening. We find that these inhibitors affect dimerization and enzymatic activity to a different extent and sometimes in an opposite way, likely due to the different molecular mechanisms underlying the two processes. The M-pro residues that emerge as key to optimize both dissociation and enzymatic activity inhibition are discussed.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Primer for Designing Main Protease (Mpro) Inhibitors of SARS-CoV-2
    Thakur, Abhishek
    Sharma, Gaurav
    Badavath, Vishnu Nayak
    Jayaprakash, Venkatesan
    Merz, Kenneth M., Jr.
    Blum, Galia
    Acevedo, Orlando
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2022, 13 (25): : 5776 - 5786
  • [22] Site mapping and small molecule blind docking reveal a possible target site on the SARS-CoV-2 main protease dimer interface
    Liang, Julia
    Karagiannis, Chris
    Pitsillou, Eleni
    Darmawan, Kevion K.
    Ng, Ken
    Hung, Andrew
    Karagiannis, Tom C.
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2020, 89
  • [23] Noncovalent Inhibitors of SARS-CoV-2 Main Protease: A Rescaffolding Attempt
    Krischuns, Tim
    Paisant, Sylvain
    Chen, Kuang-Yu
    Thirion, Laura N.
    Zettor, Agnes
    Chiaravalli, Jeanne
    Jacob, Yves
    Bellinzoni, Marco
    Naffakh, Nadia
    Janin, Yves L.
    SYNTHESIS-STUTTGART, 2025,
  • [24] Computational Prediction of Potential Inhibitors of the Main Protease of SARS-CoV-2
    Abel, Renata
    Ramos, Maria Paredes
    Chen, Qiaofeng
    Perez-Sanchez, Horacio
    Coluzzi, Flaminia
    Rocco, Monica
    Marchetti, Paolo
    Mura, Cameron
    Simmaco, Maurizio
    Bourne, Philip E.
    Preissner, Robert
    Banerjee, Priyanka
    FRONTIERS IN CHEMISTRY, 2020, 8
  • [25] Computational Determination of Potential Inhibitors of SARS-CoV-2 Main Protease
    Son Tung Ngo
    Ngoc Quynh Anh Pham
    Ly Thi Le
    Duc-Hung Pham
    Vu, Van V.
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2020, 60 (12) : 5771 - 5780
  • [26] A Genetic Trap in Yeast for Inhibitors of SARS-CoV-2 Main Protease
    Alalam, Hanna
    Sigurdardottir, Sunniva
    Bourgard, Catarina
    Tiukova, Ievgeniia
    King, Ross D.
    Grotli, Morten
    Sunnerhagen, Per
    MSYSTEMS, 2021, 6 (06)
  • [27] Zinc thiotropolone combinations as inhibitors of the SARS-CoV-2 main protease
    DeLaney, Christopher
    Sheng, Yan
    Pectol, D. Chase
    Vantansever, Erol
    Zhang, Hanyuan
    Bhuvanesh, Nattamai
    Salas, Isaiah
    Liu, Wenshe R.
    Fierke, Carol F.
    Darensbourg, Marcetta Y.
    DALTON TRANSACTIONS, 2021, 50 (35) : 12226 - 12233
  • [28] De novo Design of SARS-CoV-2 Main Protease Inhibitors
    Fischer, Christian
    Veprek, Nynke A.
    Peitsinis, Zisis
    Ruhmann, Klaus-Peter
    Yang, Chao
    Spradlin, Jessica N.
    Dovala, Dustin
    Nomura, Daniel K.
    Zhang, Yingkai
    Trauner, Dirk
    SYNLETT, 2022, 33 (05) : 458 - 463
  • [29] SARS CoV main proteinase: The monomer-dimer equilibrium dissociation constant
    Graziano, Vito
    McGrath, William J.
    Yang, Lin
    Mangel, Walter F.
    BIOCHEMISTRY, 2006, 45 (49) : 14632 - 14641
  • [30] Plant protease inhibitors against SARS-CoV-2 main protease: an in silico approach
    Lima, Adrianne M.
    de Souza, Adson A.
    Amaral, Jackson L.
    Freire, Valder N.
    Souza, Pedro F.
    de Oliveira, Hermogenes D.
    FUTURE VIROLOGY, 2023, 18 (07) : 439 - 454