Internally generated sequences in learning and executing goal-directed behavior

被引:159
作者
Pezzulo, Giovanni [1 ]
van der Meer, Matthijs A. A. [2 ,3 ]
Lansink, Carien S. [4 ,5 ]
Pennartz, Cyriel M. A. [4 ,5 ]
机构
[1] CNR, Inst Cognit Sci & Technol, I-00185 Rome, Italy
[2] Univ Waterloo, Dept Biol, Waterloo, ON N2L 3G1, Canada
[3] Univ Waterloo, Ctr Theoret Neurosci, Waterloo, ON N2L 3G1, Canada
[4] Univ Amsterdam, Swammerdam Inst Life Sci, Ctr Neurosci, NL-1098 XH Amsterdam, Netherlands
[5] Amsterdam Brain & Cognit, Res Prior Program Brain & Cognit, NL-1018 WS Amsterdam, Netherlands
关键词
NUCLEUS-ACCUMBENS CORE; PLACE-CELL SEQUENCES; HIPPOCAMPAL REPLAY; PREFRONTAL CORTEX; VENTRAL STRIATUM; BASAL GANGLIA; PATH-INTEGRATION; DECISION-MAKING; DEFAULT-MODE; NEURAL BASIS;
D O I
10.1016/j.tics.2014.06.011
中图分类号
B84 [心理学]; C [社会科学总论]; Q98 [人类学];
学科分类号
03 ; 0303 ; 030303 ; 04 ; 0402 ;
摘要
A network of brain structures including hippocampus (HC), prefrontal cortex, and striatum controls goal-directed behavior and decision making. However, the neural mechanisms underlying these functions are unknown. Here, we review the role of 'internally generated sequences': structured, multi-neuron firing patterns in the network that are not confined to signaling the current state or location of an agent, but are generated on the basis of internal brain dynamics. Neurophysiological studies suggest that such sequences fulfill functions in memory consolidation, augmentation of representations, internal simulation, and recombination of acquired information. Using computational modeling, we propose that internally generated sequences may be productively considered a component of goal-directed decision systems, implementing a sampling-based inference engine that optimizes goal acquisition at multiple timescales of on-line choice, action control, and learning.
引用
收藏
页码:647 / 657
页数:11
相关论文
共 124 条
[1]   Synaptic plasticity: taming the beast [J].
Abbott, L. F. ;
Nelson, Sacha B. .
NATURE NEUROSCIENCE, 2000, 3 (11) :1178-1183
[2]   Hippocampal Contributions to the Episodic Simulation of Specific and General Future Events [J].
Addis, Donna Rose ;
Cheng, Theresa ;
Roberts, Reece P. ;
Schacter, Daniel L. .
HIPPOCAMPUS, 2011, 21 (10) :1045-1052
[3]   Functional-Anatomic Fractionation of the Brain's Default Network [J].
Andrews-Hanna, Jessica R. ;
Reidler, Jay S. ;
Sepulcre, Jorge ;
Poulin, Renee ;
Buckner, Randy L. .
NEURON, 2010, 65 (04) :550-562
[4]  
[Anonymous], 1983, Canadian Psychology
[5]  
[Anonymous], 2012, MACHINE LEARNING PRO
[6]   Discrete neurochemical coding of distinguishable motivational processes: insights from nucleus accumbens control of feeding [J].
Baldo, Brian A. ;
Kelley, Ann E. .
PSYCHOPHARMACOLOGY, 2007, 191 (03) :439-459
[7]   The integrative function of the basal ganglia in instrumental conditioning [J].
Balleine, Bernard W. ;
Lijeholm, Mimi ;
Ostlund, Sean B. .
BEHAVIOURAL BRAIN RESEARCH, 2009, 199 (01) :43-52
[8]   Goal-directed instrumental action: contingency and incentive learning and their cortical substrates [J].
Balleine, BW ;
Dickinson, A .
NEUROPHARMACOLOGY, 1998, 37 (4-5) :407-419
[9]   The construction of semantic memory: grammar-based representations learned from relational episodic information [J].
Battaglia, Francesco P. ;
Pennartz, Cyriel M. A. .
FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2011, 5 :1-22
[10]   Cocaine seeking habits depend upon doparnine-dependent serial connectivity linking the ventral with the dorsal striatum [J].
Belin, David ;
Everitt, Barry J. .
NEURON, 2008, 57 (03) :432-441