Analyzing Hierarchical Multi-View MRI Data With StaPLR: An Application to Alzheimer's Disease Classification

被引:1
作者
van Loon, Wouter [1 ]
de Vos, Frank [1 ,2 ,3 ]
Fokkema, Marjolein [1 ]
Szabo, Botond [4 ,5 ]
Koini, Marisa [6 ]
Schmidt, Reinhold [6 ]
de Rooij, Mark [1 ,3 ]
机构
[1] Leiden Univ, Dept Methodol & Stat, Leiden, Netherlands
[2] Leiden Univ, Dept Radiol, Med Ctr, Leiden, Netherlands
[3] Leiden Inst Brain & Cognit, Leiden, Netherlands
[4] Bocconi Univ, Dept Decis Sci, Milan, Italy
[5] Bocconi Univ, Bocconi Inst Data Sci & Analyt, Milan, Italy
[6] Med Univ Graz, Div Neurogeriatr, Dept Neurol, Graz, Austria
基金
欧洲研究理事会;
关键词
multimodal MRI; machine learning; stacked generalization; penalized regression; feature selection; MILD COGNITIVE IMPAIRMENT; INDIVIDUAL CLASSIFICATION; REGULARIZATION; PREDICTION; REGRESSION; DIFFUSION; SELECTION; DEMENTIA;
D O I
10.3389/fnins.2022.830630
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Multi-view data refers to a setting where features are divided into feature sets, for example because they correspond to different sources. Stacked penalized logistic regression (StaPLR) is a recently introduced method that can be used for classification and automatically selecting the views that are most important for prediction. We introduce an extension of this method to a setting where the data has a hierarchical multi-view structure. We also introduce a new view importance measure for StaPLR, which allows us to compare the importance of views at any level of the hierarchy. We apply our extended StaPLR algorithm to Alzheimer's disease classification where different MRI measures have been calculated from three scan types: structural MRI, diffusion-weighted MRI, and resting-state fMRI. StaPLR can identify which scan types and which derived MRI measures are most important for classification, and it outperforms elastic net regression in classification performance.
引用
收藏
页数:15
相关论文
共 49 条
[1]   MMDD-Ensemble: A Multimodal Data-Driven Ensemble Approach for Parkinson's Disease Detection [J].
Ali, Liaqat ;
He, Zhiquan ;
Cao, Wenming ;
Rauf, Hafiz Tayyab ;
Imrana, Yakubu ;
Bin Heyat, Md Belal .
FRONTIERS IN NEUROSCIENCE, 2021, 15
[2]  
[Anonymous], 2022, R: A Language and Environment for Statistical Computing
[3]   Multimodal Imaging Signatures of Parkinson's Disease [J].
Bowman, F. DuBois ;
Drake, Daniel F. ;
Huddleston, Daniel E. .
FRONTIERS IN NEUROSCIENCE, 2016, 10
[4]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[5]  
Center for Morphometric Analysis (CMA) at Massachusetts General Hospital (MGH) Harvard Medical School, 2006, HARV OXF CORT ATL BO
[6]   Subsampling versus Bootstrapping in Resampling-Based Model Selection for Multivariable Regression [J].
De Bin, Riccardo ;
Janitza, Silke ;
Sauerbrei, Willi ;
Boulesteix, Anne-Laure .
BIOMETRICS, 2016, 72 (01) :272-280
[7]   A comprehensive analysis of resting state fMRI measures to classify individual patients with Alzheimer's disease [J].
de Vos, Frank ;
Koini, Marisa ;
Schouten, Tijn M. ;
Seiler, Stephan ;
van der Grond, Jeroen ;
Lechner, Anita ;
Schmidt, Reinhold ;
de Rooij, Mark ;
Rombouts, Serge A. R. B. .
NEUROIMAGE, 2018, 167 :62-72
[8]   Combining multiple anatomical MRI measures improves Alzheimer's disease classification [J].
de Vos, Frank ;
Schouten, Tijn M. ;
Hafkemeijer, Anne ;
Dopper, Elise G. P. ;
van Swieten, John C. ;
de Rooij, Mark ;
van der Grond, Jeroen ;
Rombouts, Serge A. R. B. .
HUMAN BRAIN MAPPING, 2016, 37 (05) :1920-1929
[9]   An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest [J].
Desikan, Rahul S. ;
Segonne, Florent ;
Fischl, Bruce ;
Quinn, Brian T. ;
Dickerson, Bradford C. ;
Blacker, Deborah ;
Buckner, Randy L. ;
Dale, Anders M. ;
Maguire, R. Paul ;
Hyman, Bradley T. ;
Albert, Marilyn S. ;
Killiany, Ronald J. .
NEUROIMAGE, 2006, 31 (03) :968-980
[10]  
Dick P.K., 2002, Minority report