Data oscillation and convergence of adaptive FEM

被引:368
作者
Morin, P [1 ]
Nochetto, RH
Siebert, KG
机构
[1] Univ Maryland, Dept Math, College Pk, MD 20742 USA
[2] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA
[3] Inst Angew Math, D-79104 Freiburg, Germany
关键词
a posteriori error estimators; data oscillation; adaptive mesh refinement; convergence; performance; quasi-optimal meshes;
D O I
10.1137/S0036142999360044
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Data oscillation is intrinsic information missed by the averaging process associated with finite element methods ( FEM) regardless of quadrature. Ensuring a reduction rate of data oscillation, together with an error reduction based on a posteriori error estimators, we construct a simple and efficient adaptive FEM for elliptic partial differential equations (PDEs) with linear rate of convergence without any preliminary mesh adaptation nor explicit knowledge of constants. Any prescribed error tolerance is thus achieved in a finite number of steps. A number of numerical experiments in two and three dimensions yield quasi-optimal meshes along with a competitive performance.
引用
收藏
页码:466 / 488
页数:23
相关论文
共 14 条
[1]  
BABUSKA I, 1984, NUMER MATH, V44, P75, DOI 10.1007/BF01389757
[2]   A FEEDBACK FINITE-ELEMENT METHOD WITH A POSTERIORI ERROR ESTIMATION .1. THE FINITE-ELEMENT METHOD AND SOME BASIC PROPERTIES OF THE A POSTERIORI ERROR ESTIMATOR [J].
BABUSKA, I ;
MILLER, A .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1987, 61 (01) :1-40
[3]  
COHEN A, IN PRESS MATH COMP
[4]   A robust adaptive strategy for the nonlinear Poisson equation [J].
Dorfler, W .
COMPUTING, 1995, 55 (04) :289-304
[5]  
Dörfler W, 2000, Z ANGEW MATH MECH, V80, P481, DOI 10.1002/1521-4001(200007)80:7<481::AID-ZAMM481>3.0.CO
[6]  
2-5
[7]   A convergent adaptive algorithm for Poisson's equation [J].
Dorfler, W .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (03) :1106-1124
[8]  
Kellogg R.B., 1974, APPL ANAL, V4, P101, DOI DOI 10.1080/00036817408839086
[9]   A RECURSIVE APPROACH TO LOCAL MESH REFINEMENT IN 2 AND 3 DIMENSIONS [J].
KOSSACZKY, I .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1994, 55 (03) :275-288
[10]  
MITCHELL W, 1989, ACM T MATH SOFTWARE, V15, P210