Coral-like Ni2P@C derived from metal-organic frameworks with superior electrochemical performance for hybrid supercapacitors

被引:41
作者
Xu, Fang [1 ]
Xia, Qing [1 ]
Du, Guoping [1 ]
Fan, Zhaoyang [2 ]
Chen, Nan [1 ]
机构
[1] Nanchang Univ, Sch Mat Sci & Engn, Nanchang 330031, Jiangxi, Peoples R China
[2] Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85281 USA
基金
中国国家自然科学基金;
关键词
Ni2P; MOF; Amorphous carbon matrix; Nanostructure; Hybrid supercapacitor; NANOSHEET ARRAYS; ELECTRODE MATERIAL; FACILE SYNTHESIS; NANOWIRE ARRAYS; ENERGY-STORAGE; NI FOAM; MOF; PHOSPHORIZATION; NANOSTRUCTURES; EFFICIENT;
D O I
10.1016/j.electacta.2021.138200
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Transition metal phosphides (TMPs), used in hybrid supercapacitors (HSCs) as battery-type electrodes, have gain tractions for balancing the requirements for both power and energy; however, their poor structural integrity, inferior conductivity and low porosity restrict the achievable performance. Developing an elaborate material architecture for electrodes that endows mechanical robustness, superior conductivity and large surface area is a pressing need for TMPs to achieve boosted performance in supercapacitors. Here, we report a coral-like interconnected Ni2P nanoparticles dispersed on porous amorphous carbon matrix (Ni2P@C) as the electrode material with superior electrochemical performance. The Ni2P@C electrode exhibits a superior specific capacity of 3,631mC cm(-2) at 1 mA cm(-2) (979 C g(-1) at 1 A g(-1)). Impressively, the assembly of Ni2P@C and active carbon (AC) electrodes result in an advanced HSC with energy density of 44.0 Wh kg(-1) at 800 W kg(-1) and cycling stability of 90.5% retention after 10,0 00 cycles, demonstrating this unique Ni2P@C structure is promising for developing practical HSC technology. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:9
相关论文
共 55 条
[1]   Facile synthesis and superior supercapacitor performances of Ni2P/rGO nanoparticles [J].
An, Cuihua ;
Wang, Yijing ;
Wang, Yaping ;
Liu, Guang ;
Li, Li ;
Qiu, Fangyuan ;
Xu, Yanan ;
Jiao, Lifang ;
Yuan, Huatang .
RSC ADVANCES, 2013, 3 (14) :4628-4633
[2]   Energy storage technologies and real life applications - A state of the art review [J].
Aneke, Mathew ;
Wang, Meihong .
APPLIED ENERGY, 2016, 179 :350-377
[3]   In Situ Electrochemical Synthesis of Rod-Like Ni-MOFs as Battery-Type Electrode for High Performance Hybrid Supercapacitor [J].
Cao, Wei ;
Liu, Yu ;
Xu, Fang ;
Li, Jingbo ;
Li, Dan ;
Du, Guoping ;
Chen, Nan .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 167 (05)
[4]   Sea-urchin-like nickel-cobalt phosphide/phosphate composites as advanced battery materials for hybrid supercapacitors [J].
Chen, Hai Chao ;
Jiang, Sipeng ;
Xu, Binghui ;
Huang, Chenghao ;
Hu, Yuzhen ;
Qin, Yanliang ;
He, Maoxia ;
Cao, Haijie .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (11) :6241-6249
[5]   Shape-Controlled Synthesis of Co2P Nanostructures and Their Application in Supercapacitors [J].
Chen, Xiaojuan ;
Cheng, Ming ;
Chen, Di ;
Wang, Rongming .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (06) :3892-3900
[6]   Hollow Co2P nanoflowers assembled from nanorods for ultralong cycle-life supercapacitors [J].
Cheng, Ming ;
Fan, Hongsheng ;
Xu, Yingying ;
Wang, Rongming ;
Zhang, Xixiang .
NANOSCALE, 2017, 9 (37) :14162-14171
[7]   New asymmetric and symmetric supercapacitor cells based on nickel phosphide nanoparticles [J].
Du, Weimin ;
Kang, Ruiqin ;
Geng, Pengbiao ;
Xiong, Xin ;
Li, Dan ;
Tian, Qingqing ;
Pang, Huan .
MATERIALS CHEMISTRY AND PHYSICS, 2015, 165 :207-214
[8]   Sulfur-doped cobalt phosphide nanotube arrays for highly stable hybrid supercapacitor [J].
Elshahawy, Abdelnaby M. ;
Guan, Cao ;
Li, Xin ;
Zhang, Hong ;
Hu, Yating ;
Wu, Haijun ;
Pennycook, Stephen J. ;
Wang, John .
NANO ENERGY, 2017, 39 :162-171
[9]   Ultrathin and Porous Ni3S2/CoNi2S4 3D-Network Structure for Superhigh Energy Density Asymmetric Supercapacitors [J].
He, Weidong ;
Wang, Chenggang ;
Li, Huiqiao ;
Deng, Xiaolong ;
Xu, Xijin ;
Zhai, Tianyou .
ADVANCED ENERGY MATERIALS, 2017, 7 (21)
[10]   Metal-Organic Frameworks for Energy [J].
Hou, Chun-Chao ;
Xu, Qiang .
ADVANCED ENERGY MATERIALS, 2019, 9 (23)