Impact of labile metal nanoparticles on cellular homeostasis. Current developments in imaging, synthesis and applications

被引:25
作者
Chevallet, Mireille [1 ,2 ,3 ]
Veronesi, Giulia [1 ,2 ,3 ,4 ]
Fuchs, Alexandra [5 ]
Mintz, Elisabeth [1 ,2 ,3 ]
Michaud-Soret, Isabelle [1 ,2 ,3 ]
Deniaud, Aurelien [1 ,2 ,3 ]
机构
[1] CNRS, LCBM UMR CNRS CEA UGA 5249, F-38054 Grenoble, France
[2] CEA, LCBM, F-38054 Grenoble, France
[3] Univ Grenoble Alpes, LCBM, F-38054 Grenoble, France
[4] ESRF, European Synchrotron, 71 Ave Martyrs, F-38043 Grenoble, France
[5] CEA, BIG, DIR, Grenoble, France
来源
BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS | 2017年 / 1861卷 / 06期
关键词
Labile metal nanoparticles; Zinc; Copper; Silver; X-ray fluorescence microscopy; Metal homeostasis; ZINC-OXIDE NANOPARTICLES; BIOSYNTHESIZED SILVER NANOPARTICLES; SIZE-DEPENDENT CYTOTOXICITY; RAY NANOPROBE BEAMLINE; COPPER-OXIDE; ZNO NANOPARTICLES; REACTIVE OXYGEN; IN-VIVO; ANTIBACTERIAL ACTIVITY; CUO NANOPARTICLES;
D O I
10.1016/j.bbagen.2016.12.012
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background: The use of nanomaterials is constantly increasing in electronics, cosmetics, food additives, and is emerging in advanced biomedical applications such as theranostics, bio-imaging and therapeutics. However their safety raises concerns and requires appropriate methods to analyze their fate in vivo. Scope of review: In this review, we describe the current knowledge about the toxicity of labile metal (ZnO, CuO and Ag) nanoparticles (NPs) both at the organism and cellular levels, and describe the pathways that are triggered to maintain cellular homeostasis. We also describe advanced elemental imaging approaches to analyze intracellular NP fate. Finally, we open the discussion by presenting recent developments in terms of synthesis and applications of Ag and CuO NPs. Major conclusions: Labile metal nanoparticles (MeNPs) release metal ions that trigger a cellular response involving biomolecules binding to the ions followed by regulation of the redox balance. In addition, specific mechanisms are set up by the cell in response to physiological ions such as Cu(l) and Zn(II). Among all types of NPs, labile MeNPs induce the strongest inflammatory responses which are most probably due to the combined effects of the NPs and of its released ions. Interestingly, recent developments in imaging technologies enable the intracellular visualization of both the NPs and their ions and promise new insights into nanoparticle fate and toxicity. General significance: The exponential use of nanotechnologies associated with the difficulties of assessing their impact on health and the environment has prompted scientists to develop novel methodologies to characterize these nanoobjects in a biological context. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:1566 / 1577
页数:12
相关论文
共 145 条
[41]   Zinc oxide nanoparticles decrease the expression and activity of plasma membrane calcium ATPase, disrupt the intracellular calcium homeostasis in rat retinal ganglion cells [J].
Guo, Dadong ;
Bi, Hongsheng ;
Wang, Daoguang ;
Wu, Qiuxin .
INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY, 2013, 45 (08) :1849-1859
[42]   Genotoxic effects of zinc oxide nanoparticles [J].
Heim, Julia ;
Felder, Eva ;
Tahir, Muhammad Nawaz ;
Kaltbeitzel, Anke ;
Heinrich, Ulf Ruediger ;
Brochhausen, Christoph ;
Mailaender, Volker ;
Tremel, Wolfgang ;
Brieger, Juergen .
NANOSCALE, 2015, 7 (19) :8931-8938
[43]   Nano-scale secondary ion mass spectrometry - A new analytical tool in biogeochemistry and soil ecology: A review article [J].
Herrmann, Anke M. ;
Ritz, Karl ;
Nunan, Naoise ;
Clode, Peta L. ;
Pett-Ridge, Jennifer ;
Kilburn, Matt R. ;
Murphy, Daniel V. ;
O'Donnell, Anthony G. ;
Stockdale, Elizabeth A. .
SOIL BIOLOGY & BIOCHEMISTRY, 2007, 39 (08) :1835-1850
[44]  
Hirai T, 2016, NAT NANOTECHNOL, V11, P808, DOI [10.1038/nnano.2016.88, 10.1038/NNANO.2016.88]
[45]   Aptamer-functionalized silver nanoparticles for scanometric detection of platelet-derived growth factor-BB [J].
Hu, Hongting ;
Li, Hui ;
Zhao, Yaju ;
Dong, Shiyu ;
Li, Wei ;
Qiang, Weibing ;
Xu, Danke .
ANALYTICA CHIMICA ACTA, 2014, 812 :152-160
[46]   Green synthesis of nanoparticles and its potential application [J].
Hussain, Imtiyaz ;
Singh, N. B. ;
Singh, Ajey ;
Singh, Himani ;
Singh, S. C. .
BIOTECHNOLOGY LETTERS, 2016, 38 (04) :545-560
[47]   Quantification of ZnO Nanoparticle Uptake, Distribution, and Dissolution within Individual Human Macrophages [J].
James, Simon A. ;
Feltis, Bryce N. ;
de Jonge, Martin D. ;
Sridhar, Manoj ;
Kimpton, Justin A. ;
Altissimo, Matteo ;
Mayo, Sheridan ;
Zheng, Changxi ;
Hastings, Andrew ;
Howard, Daryl L. ;
Paterson, David J. ;
Wright, Paul Frank A. ;
Moorhead, Gareth F. ;
Turney, Terence W. ;
Fu, Jing .
ACS NANO, 2013, 7 (12) :10621-10635
[48]   In-vitro anticancer activity of green synthesized silver nanoparticles on MCF-7 human breast cancer cells [J].
Jang, Suk Ju ;
Yang, In Jun ;
Tettey, Clement O. ;
Kim, Ki Mo ;
Shin, Heung Mook .
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2016, 68 :430-435
[49]   Synthesis of pediculocidal and larvicidal silver nanoparticles by leaf extract from heartleaf moonseed plant, Tinospora cordifolia Miers [J].
Jayaseelan, Chidambaram ;
Rahuman, Abdul Abdul ;
Rajakumar, Govindasamy ;
Kirthi, Arivarasan Vishnu ;
Santhoshkumar, Thirunavukkarasu ;
Marimuthu, Sampath ;
Bagavan, Asokan ;
Kamaraj, Chinnaperumal ;
Zahir, Abdul Abduz ;
Elango, Gandhi .
PARASITOLOGY RESEARCH, 2011, 109 (01) :185-194
[50]   Fast intracellular dissolution and persistent cellular uptake of silver nanoparticles in CHO-K1 cells: implication for cytotoxicity [J].
Jiang, Xiumei ;
Miclaus, Teodora ;
Wang, Liming ;
Foldbjerg, Rasmus ;
Sutherland, Duncan S. ;
Autrup, Herman ;
Chen, Chunying ;
Beer, Christiane .
NANOTOXICOLOGY, 2015, 9 (02) :181-189