Vehicle and pedestrian video-tracking with classification based on deep convolutional neural networks

被引:5
作者
Forero, Alejandro [1 ]
Calderon, Francisco [2 ]
机构
[1] Secretaria Dist Movilidad, Bogota, Colombia
[2] Pontificia Univ Javeriana, Secretaria Dist Movilidad, Bogota, Colombia
来源
2019 XXII SYMPOSIUM ON IMAGE, SIGNAL PROCESSING AND ARTIFICIAL VISION (STSIVA) | 2019年
关键词
image processing; video object tracking; video-tracking; Object detection; vehicle counting;
D O I
10.1109/stsiva.2019.8730234
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this article we propose an algorithm for the classification, tracking and counting of vehicles and pedestrians in video sequences; The algorithm is divided into two parts, a classification algorithm, which is based on convolutional neural networks, implemented using the You Only Look Once (YOLO) method; and a proposed algorithm for tracking regions of interest based in a well defined taxonomy. For the first stage of classification, We train and evaluate the performance with a set of more than 50000 labels, which we make available for their use. The tracking algorithm is evaluated against manual counts in video sequences of different scenarios captured in the management center of the Secretaria distrital de Movilidad of Bogota.
引用
收藏
页数:5
相关论文
共 17 条
[1]  
[Anonymous], 2012, PAMI
[2]  
Benenson J. H. B. S. Rodrigo, 2015, LECT NOTES COMPUTER, V8926
[3]  
Dollár P, 2009, PROC CVPR IEEE, P304, DOI 10.1109/CVPRW.2009.5206631
[4]   The PASCAL Visual Object Classes Challenge: A Retrospective [J].
Everingham, Mark ;
Eslami, S. M. Ali ;
Van Gool, Luc ;
Williams, Christopher K. I. ;
Winn, John ;
Zisserman, Andrew .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2015, 111 (01) :98-136
[5]  
Hsu Y.-C., 2018, P 2018 INT JOINT C N, P1, DOI DOI 10.1109/IVCNZ.2018.8634799
[6]  
Joseph RK, 2016, CRIT POL ECON S ASIA, P1
[7]   ImageNet Classification with Deep Convolutional Neural Networks [J].
Krizhevsky, Alex ;
Sutskever, Ilya ;
Hinton, Geoffrey E. .
COMMUNICATIONS OF THE ACM, 2017, 60 (06) :84-90
[8]   Real-Time Pedestrian Detection Using Convolutional Neural Networks [J].
Kuang, Ping ;
Ma, Tingsong ;
Li, Fan ;
Chen, Ziwei .
INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2018, 32 (11)
[9]  
Ocana A. M., 2012, 2012 XVII Symposium of Image, Signal Processing, and Artificial Vision (STSIVA 2012), P153, DOI 10.1109/STSIVA.2012.6340574
[10]   The probabilistic basis of Jaccard's index of similarity [J].
Real, R ;
Vargas, JM .
SYSTEMATIC BIOLOGY, 1996, 45 (03) :380-385