Quantitative analysis of wheat maltose by combined terahertz spectroscopy and imaging based on Boosting ensemble learning

被引:48
作者
Jiang, Yuying [1 ,2 ,3 ]
Ge, Hongyi [1 ,2 ,3 ]
Zhang, Yuan [2 ,3 ]
机构
[1] Henan Univ Technol, Key Lab Grain Informat Proc & Control, Minist Educ, Zhengzhou 450001, Henan, Peoples R China
[2] Henan Univ Technol, Coll Informat Sci & Engn, Zhengzhou 450001, Henan, Peoples R China
[3] Henan Univ Technol, Key Lab Henan Prov Grain Photoelect Detect & Cont, Zhengzhou 450001, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
THz spectroscopy imaging; Data fusion; Quality control; Quantitative analysis; Non-destructive determination; Boosting-LS-SVM; NEAR-INFRARED-SPECTROSCOPY; ELECTRONIC NOSE; DATA FUSION; CHEMOMETRICS;
D O I
10.1016/j.foodchem.2019.125533
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
To improve the prediction accuracy of existing data modeling that is based on either spectral data or image data alone, we herein propose a method for the quantitative analysis of wheat maltose contents based on the fusion of terahertz spectroscopy and terahertz imaging, which allows features and balance fusion information to be extracted from the data, and fusion modeling of the feature information to be conducted. Moreover, a Boosting-based, novel multivariate data fusion method and a Boosting iteration termination index based on the structural risk minimization theory are proposed to achieve automatic optimization of the basic model parameters of least squares support vector machines (LS-SVMs). The best results were obtained with data fusion combining spectroscopy and image feature data, with classification performances better than those obtained on single analytical sources, thereby indicating that the multivariate data fusion method proposed is an effective method for the quantitative detection of maltose content in wheat. Furthermore, four unknown maltose concentration wheat samples are analyzed quantitatively using proposed model.
引用
收藏
页数:8
相关论文
共 27 条
[1]   Terahertz-time domain spectroscopy for the detection of PCR amplified DNA in aqueous solution [J].
Arora, Arun ;
Trung Quan Luong ;
Krueger, Matthias ;
Kim, Young Jun ;
Nam, Chang-Hoon ;
Manz, Andreas ;
Havenith, Martina .
ANALYST, 2012, 137 (03) :575-579
[2]   Structure of a core fragment of glycoprotein H from pseudorabies virus in complex with antibody [J].
Backovic, Marija ;
DuBois, Rebecca M. ;
Cockburn, Joseph J. ;
Sharff, Andrew J. ;
Vaney, Marie-Christine ;
Granzow, Harald ;
Klupp, Barbara G. ;
Bricogne, Gerard ;
Mettenleiter, Thomas C. ;
Rey, Felix A. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (52) :22635-22640
[3]   Chemical profiling and multivariate data fusion methods for the identification of the botanical origin of honey [J].
Ballabio, Davide ;
Robotti, Elisa ;
Grisoni, Francesca ;
Quasso, Fabio ;
Bobba, Marco ;
Vercelli, Serena ;
Gosetti, Fabio ;
Calabrese, Giorgio ;
Sangiorgi, Emanuele ;
Orlandi, Marco ;
Marengo, Emilio .
FOOD CHEMISTRY, 2018, 266 :79-89
[4]   STANDARD NORMAL VARIATE TRANSFORMATION AND DE-TRENDING OF NEAR-INFRARED DIFFUSE REFLECTANCE SPECTRA [J].
BARNES, RJ ;
DHANOA, MS ;
LISTER, SJ .
APPLIED SPECTROSCOPY, 1989, 43 (05) :772-777
[5]  
BASON ML, 1993, CEREAL CHEM, V70, P269
[6]   Comparison of sensory and consumer results with electronic nose and tongue sensors for apple juices [J].
Bleibaum, RN ;
Stone, H ;
Tan, T ;
Labreche, S ;
Saint-Martin, E ;
Isz, S .
FOOD QUALITY AND PREFERENCE, 2002, 13 (06) :409-422
[7]   Characterization and classification of Italian Barbera wines by using an electronic nose and an amperometric electronic tongue [J].
Buratti, S ;
Benedetti, S ;
Scampicchio, M ;
Pangerod, EC .
ANALYTICA CHIMICA ACTA, 2004, 525 (01) :133-139
[8]   Near-infrared spectroscopy and X-ray fluorescence data fusion for olive leaf analysis and crop nutritional status determination [J].
Comino, F. ;
Ayora-Canada, M. J. ;
Aranda, V. ;
Diaz, A. ;
Dominguez-Vidal, A. .
TALANTA, 2018, 188 :676-684
[9]   Evaluation of different storage conditions of extra virgin olive oils with an innovative recognition tool built by means of electronic nose and electronic tongue [J].
Cosio, M. S. ;
Ballabio, D. ;
Benedetti, S. ;
Gigliotti, C. .
FOOD CHEMISTRY, 2007, 101 (02) :485-491
[10]   Combining mass spectrometry based electronic nose, visible-near infrared spectroscopy and chemometrics to assess the sensory properties of Australian Riesling wines [J].
Cozzolino, D ;
Smyth, HE ;
Lattey, KA ;
Cynkar, W ;
Janik, L ;
Dambergs, RG ;
Francis, IL ;
Gishen, M .
ANALYTICA CHIMICA ACTA, 2006, 563 (1-2) :319-324