EMMS-based discrete particle method (EMMS-DPM) for simulation of gas-solid flows

被引:186
作者
Lu, Liqiang [1 ,2 ]
Xu, Ji [1 ]
Ge, Wei [1 ]
Yue, Yunpeng [1 ]
Liu, Xinhua [1 ]
Li, Jinghai [1 ]
机构
[1] Chinese Acad Sci, Inst Proc Engn, State Key Lab Multiphase Complex Syst, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Circulating fluidized bed (CFB); Coarse-graining (CG); Discrete particle method (DPM); Energy minimization multi-scale (EMMS) model; Meso-scale; Multi-scale; CIRCULATING FLUIDIZED-BED; NUMERICAL-SIMULATION; EULERIAN SIMULATION; MODEL EFM; RISER; DRAG; PERFORMANCE; FORMULATION;
D O I
10.1016/j.ces.2014.08.004
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Understanding the hydrodynamics of gas-solid flows is a grand challenge in mechanical and chemical engineering. The continuum-based two-fluid models (TFM) are currently not accurate enough to describe the multi-scale heterogeneity, while the discrete particle method (DPM) following the trajectory of each particle is computationally infeasible for industrial systems. Following our previous work, we report in this article a coarse-grained DPM considering the meso-scale structure based on the energy-minimization multi-scale (EMMS) model, which can be orders of magnitude faster than the traditional DPM and can take full advantage of CPU-CPU (graphics processing unit) hybrid super-computing. The size and solids concentration of the coarse-grained particles (CGP), as well as their interactions with the gas Row (the drag) are determined by the EMMS model with a two-phase decomposition. The interactions between CGPs are determined according to the kinetic theory of granular flows (KTGF). The method is tested by simulating the onset of fluidization and the steady state flow in lab-scale circulating fluidized bed (CFB) risers with different geometries and operating conditions both in 2D and 3D. The results agree well with experiments and traditional DPM based on single particles. The prospect of this method as a higher-resolution alternative to TEM for engineering applications and even for virtual process engineering is discussed finally. (C) 2014 Elsevier Ltd. All rights reserved
引用
收藏
页码:67 / 87
页数:21
相关论文
共 58 条
[1]   A FLUID MECHANICAL DESCRIPTION OF FLUIDIZED BEDS [J].
ANDERSON, TB ;
JACKSON, R .
INDUSTRIAL & ENGINEERING CHEMISTRY FUNDAMENTALS, 1967, 6 (04) :527-&
[2]   The multiphase particle-in-cell (MP-PIC) method for dense particulate flows [J].
Andrews, MJ ;
ORourke, PJ .
INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 1996, 22 (02) :379-402
[3]   Numerical investigation of the grid spatial resolution and the anisotropic character of EMMS in CFB multiphase flow [J].
Atsonios, K. ;
Nikolopoulos, A. ;
Karellas, S. ;
Nikolopoulos, N. ;
Grammelis, P. ;
Kakaras, Em .
CHEMICAL ENGINEERING SCIENCE, 2011, 66 (17) :3979-3990
[4]   STATIC INSTABILITY ANALYSIS OF CIRCULATING FLUIDIZED-BEDS AND CONCEPT OF HIGH-DENSITY RISERS [J].
BI, HT ;
ZHU, JX .
AICHE JOURNAL, 1993, 39 (08) :1272-1280
[5]   FLOW REGIME DIAGRAMS FOR GAS-SOLID FLUIDIZATION AND UPWARD TRANSPORT [J].
BI, HT ;
GRACE, JR .
INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 1995, 21 (06) :1229-1236
[6]   Multi-scale HPC system for multi-scale discrete simulation-Development and application of a supercomputer with 1 Petaflops peak performance in single precision [J].
Chen, Feiguo ;
Ge, Wei ;
Guo, Li ;
He, Xianfeng ;
Li, Bo ;
Li, Jinghai ;
Li, Xipeng ;
Wang, Xiaowei ;
Yuan, Xiaolong .
PARTICUOLOGY, 2009, 7 (04) :332-335
[7]   A two-fluid smoothed particle hydrodynamics (TF-SPH) method for gas-solid fluidization [J].
Deng, Lijuan ;
Liu, Yaning ;
Wang, Wei ;
Ge, Wei ;
Li, Jinghai .
CHEMICAL ENGINEERING SCIENCE, 2013, 99 :89-101
[8]  
ERGUN S, 1952, CHEM ENG PROG, V48, P89
[9]   Macro-scale phenomena reproduced in microscopic systems-pseudo-particle modeling of fluidization [J].
Ge, W ;
Li, JH .
CHEMICAL ENGINEERING SCIENCE, 2003, 58 (08) :1565-1585
[10]   Physical mapping of fluidization regimes - the EMMS approach [J].
Ge, W ;
Li, JH .
CHEMICAL ENGINEERING SCIENCE, 2002, 57 (18) :3993-4004