The upper Browder spectrum property

被引:5
作者
Benjamin, Ronalda [1 ]
Mouton, Sonja [1 ]
机构
[1] Stellenbosch Univ, Dept Math Sci, Private Bag 11, ZA-7602 Matieland, South Africa
基金
新加坡国家研究基金会;
关键词
Ordered Banach algebra; Positive element; Upper Browder spectrum; Disjunctive product; ORDERED BANACH-ALGEBRAS; POSITIVE OPERATOR;
D O I
10.1007/s11117-016-0405-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note we continue our study on the upper Browder spectrum initiated in Benjamin and Mouton (Quaest. Math. 39(5), 2016). Recall that, for an element a of an ordered Banach algebra A and w.r.t. a Banach algebra homomorphism T : A -> B, we have inclusions sigma(Ta) subset of beta(T)(a) subset of beta(+)(T)(a) subset of sigma(a), where sigma(Ta), beta(T)(a), beta(+)(T)(a) and sigma(a) denote the Fredholm, Browder, upper Browder and usual) spectra of a, respectively (Benjamin and Mouton in Quaest. Math. 39(5), 2016). This paper concerns the following natural question: given that the spectral radius of a positive element is not in the Fredholm spectrum of the element, when will it be outside the upper Browder spectrum of that element?
引用
收藏
页码:575 / 592
页数:18
相关论文
共 21 条
[1]  
Abramovich Y.A., 2002, Graduate Studies in Mathematics, V50
[2]   Some properties of essential spectra of a positive operator [J].
Alekhno, Egor A. .
POSITIVITY, 2007, 11 (03) :375-386
[3]   The irreducibility in ordered Banach algebras [J].
Alekhno, Egor A. .
POSITIVITY, 2012, 16 (01) :143-176
[4]   The Lower Weyl Spectrum of a Positive Operator [J].
Alekhno, Egor A. .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2010, 67 (03) :301-326
[5]   Some properties of essential spectra of a positive operator, II [J].
Alekhno, Egor A. .
POSITIVITY, 2009, 13 (01) :3-20
[6]  
Aliprantis C. D., 1985, POSITIVE OPERATORS
[7]  
Arendt W., 1986, INDAG MATH, V48, P109, DOI [10.1016/S1385-7258(86)80001-4, DOI 10.1016/S1385-7258(86)80001-4]
[8]  
Aupetit B., 1991, A primer on spectral theory
[9]   Fredholm theory in ordered Banach algebras [J].
Benjamin, Ronalda ;
Mouton, Sonja .
QUAESTIONES MATHEMATICAE, 2016, 39 (05) :643-664
[10]  
Bonsall F. F., 1973, Ergeb. Math. Grenzgeb., V80