Enhanced visible Light-Driven photocatalytic hydrogen evolution and stability for noble Metal-Free MoS2/Zn0.5Cd0.5S heterostructures with W/Z phase junctions

被引:26
作者
Zhang, Yuhao [1 ]
Lu, Dingze [1 ,2 ]
Li, Hang [1 ]
Wang, Hongmei [4 ]
Zhang, Boyu [1 ]
Wang, Jiuxin [1 ]
Wu, Qiong [1 ]
Zeng, Yimei [1 ]
Zhang, Xinyu [1 ]
Zhou, Min [1 ]
Hao, Hongjuan [1 ]
Pei, Huanyu [1 ]
Fan, Huiqing [2 ]
Neena, D. [5 ]
Kondamareddy, Kiran Kumar [3 ]
机构
[1] Xian Polytechn Univ, Sch Sci, 19 Jinhua South Rd, Xian 710048, Peoples R China
[2] Northwestern Polytech Univ, Sch Mat Sci & Engn, State Key Lab Solidificat Proc, Xian 710072, PR, Peoples R China
[3] Fiji Natl Univ, Sch Pure Sci, Dept Phys, Coll Engn Sci & Technol, POB 5529 Fiji, Suva, Fiji
[4] Jiaxing Univ, Coll Biol Chem Sci & Engn, Jiaxing, Zhejiang, Peoples R China
[5] Univ Auckland, Dept Chem Mat Engn, Auckland, New Zealand
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
MoS2; nanoflowers; MoS2/Zn0.5Cd0.5S; W/Z phase junctions; Photoinduced charge carriers; Visible light-driven photocatalytic hydrogen evolution; ZN0.5CD0.5S SOLID-SOLUTION; H-2; EVOLUTION; HETEROJUNCTION PHOTOCATALYST; ZINC BLENDE/WURTZITE; DODECAHEDRAL CAGES; GENERATION; COCATALYST; SEPARATION; ZNCDS; PERFORMANCE;
D O I
10.1016/j.apsusc.2022.152770
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A series of composite heterojunction-MoS2/Zn0.5Cd0.5S photocatalysts free of noble metal ions was prepared using a simple hydrothermal method. The X-ray diffraction spectra of the MoS2/Zn0.5Cd0.5S composites exhibit three strong intensive peaks, thereby explaining the existence of wurtzite (CdS) and zinc blende (ZnS) in the form of the wurtzite/zinc-blende phase junctions. Microstructural studies indicate that the sample displays a typical cubic crystal structure and that the MoS2 with flower-like structure uniformly wraps the granular Zn0.5Cd0.5S. X-ray photoelectron, Fourier transform infrared, and UV-Vis diffuse reflectance spectroscopic methods confirm that the heterojunction, which possesses outstanding photoresponse ability, is constructed between Zn0.5Cd0.5S nanoparticles and MoS2 nanoflowers. The fluorescence spectroscopy, surface photocurrent spectroscopy, and electrochemical studies indicate that Zn0.5Cd0.5S nanoparticles with specific amount of MoS2 nanoflowers can effectively suppress the recombination of photoinduced charge carriers of the composites. Therefore, pristine Zn0.5Cd0.5S nanoparticles loaded with 3%MoS2 exhibit optimum performance of hydrogen production (388.2 mu mol/h), which is 1.3 times that of pristine Zn0.5Cd0.5S nanoparticles. A plausible mechanism for enhanced photocatalysis is provided in terms of the heterojunction assisted effective separation of charge carriers that are generated by irradiation.
引用
收藏
页数:13
相关论文
共 66 条
[1]   Preparation of nanostructured and nanosheets of MoS2 oxide using oxidation method [J].
Amini, Majed ;
Ramazani, Ahmad S. A. ;
Faghihi, Morteza ;
Fattahpour, Seyyedfaridoddin .
ULTRASONICS SONOCHEMISTRY, 2017, 39 :188-196
[2]   Carbon quantum dots/Zn2+ ions doped-CdS nanowires with enhanced photocatalytic activity for reduction of 4-nitroaniline to p-phenylenediamine [J].
Chai, Yuan-Yuan ;
Qu, De-Peng ;
Ma, De-Kun ;
Chen, Wei ;
Huang, Shaoming .
APPLIED SURFACE SCIENCE, 2018, 450 :1-8
[3]   Drastic Layer-Number-Dependent Activity Enhancement in Photocatalytic H2 Evolution over nMoS2/CdS (n 1) Under Visible Light [J].
Chang, Kun ;
Li, Mu ;
Wang, Tao ;
Ouyang, Shuxin ;
Li, Peng ;
Liu, Lequan ;
Ye, Jinhua .
ADVANCED ENERGY MATERIALS, 2015, 5 (10)
[4]   PEG-assisted solvothermal synthesis of MoS2 nanosheets with enhanced tribological property [J].
Chen, Jianfeng ;
Xu, Zuxin ;
Hu, Yun ;
Yi, Meirong .
LUBRICATION SCIENCE, 2020, 32 (06) :273-282
[5]   Novel ZnCdS Quantum Dots Engineering for Enhanced Visible-Light-Driven Hydrogen Evolution [J].
Chen, Jianmin ;
Lv, Siming ;
Shen, Zirong ;
Tian, Panliang ;
Chen, Junying ;
Li, Yingwei .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (16) :13805-+
[6]   Fabricating sandwich-shelled ZnCdS/ZnO/ZnCdS dodecahedral cages with "one stone" as Z-scheme photocatalysts for highly efficient hydrogen production [J].
Chen, Jianmin ;
Shen, Zirong ;
Lv, Siming ;
Shen, Kui ;
Wu, Rongfang ;
Jiang, Xiao-fang ;
Fan, Ting ;
Chen, Junying ;
Li, Yingwei .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (40) :19631-19642
[7]   Hollow ZnCdS dodecahedral cages for highly efficient visible-light-driven hydrogen generation [J].
Chen, Jianmin ;
Chen, Junying ;
Li, Yingwei .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (46) :24116-24125
[8]  
Dai DS, 2018, APPL CATAL B-ENVIRON, V233, P194, DOI [10.1016/j.apcatb.2018.04.013, 10.1016/j.apeatb.2018.04.013]
[9]   Compositional regulation and modification of the host CdS for efficient photocatalytic hydrogen production: Case study on MoS2 decorated Co0.2Cd0.8S nanorods [J].
Deng, Qinghua ;
Miao, Tifang ;
Wang, Ziqun ;
Xu, Yun ;
Fu, Xianliang .
CHEMICAL ENGINEERING JOURNAL, 2019, 378
[10]   Hollow microspheres consisting of uniform ZnxCd1-xS nanoparticles with noble-metal-free co-catalysts for hydrogen evolution with high quantum efficiency under visible light [J].
Gholipour, Mohammad Reza ;
Chinh Chien Nguyen ;
Beland, Francois ;
Do, Trong-On .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2018, 358 :1-9