A Fisher-Kolmogorov equation with finite speed of propagation

被引:17
作者
Andreu, F. [1 ]
Caselles, V. [2 ]
Mazon, J. M. [1 ]
机构
[1] Univ Valencia, Dept Anal Matemat, E-46100 Valencia, Spain
[2] Univ Pompeu Fabra, Dept Tecnol, Barcelona 08018, Spain
关键词
Flux limited diffusion equations; Reaction-diffusion equations; Entropy solutions; Front propagation; REACTION-DIFFUSION SYSTEM; TRAVELING-WAVES;
D O I
10.1016/j.jde.2010.01.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study a Fisher-Kolmogorov type equation with a flux limited diffusion term and we prove the existence and uniqueness of finite speed moving fronts and the existence of some explicit solutions in a particular regime of the equation. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:2528 / 2561
页数:34
相关论文
共 35 条
[1]   Some regularity results on the 'relativistic' heat equation [J].
Andreu, F. ;
Caselles, V. ;
Mazon, J. M. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 245 (12) :3639-3663
[2]   The Cauchy problem for a strongly degenerate quasilinear equation [J].
Andreu, F ;
Caselles, V ;
Mazón, JM .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2005, 7 (03) :361-393
[3]   A strongly degenerate quasilinear elliptic equation [J].
Andreu, F ;
Caselles, V ;
Mazón, JM .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 61 (04) :637-669
[4]  
Andreu F, 2004, ANN SCUOLA NORM-SCI, V3, P555
[5]  
Andreu F., 2004, Progress in Mathematics, V223
[6]   Finite propagation speed for limited flux diffusion equations [J].
Andreu, Fuensanta ;
Caselles, Vicent ;
Mazon, Jose M. ;
Moll, Salvador .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2006, 182 (02) :269-297
[7]   Existence and uniqueness of a solution for a parabolic quasilinear problem for linear growth functionals with L1 data [J].
Andreu-Vaillo, F ;
Caselles, V ;
Mazón, JM .
MATHEMATISCHE ANNALEN, 2002, 322 (01) :139-206
[8]  
[Anonymous], 2000, Oxford Mathematical Monographs
[9]  
[Anonymous], 1989, GRAD TEXTS MATH
[10]  
[Anonymous], 1977, MATH SURVEYS MONOGR