The representation type of Jacobian algebras

被引:29
作者
Geiss, Christof [1 ]
Labardini-Fragoso, Daniel [1 ]
Schroeer, Jan [2 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Matemat, Ciudad Univ, Mexico City 04510, DF, Mexico
[2] Univ Bonn, Math Inst, Endenicher Allee 60, D-53115 Bonn, Germany
关键词
Jacobian algebra; Quiver with potential; Mutation; Triangulation of a marked surface; Gentle algebra; Skewed-gentle algebra; Tame algebra; Wild algebra; Representation type; CLUSTER ALGEBRAS; QUIVERS; TAME; POTENTIALS; MUTATION;
D O I
10.1016/j.aim.2015.09.038
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the representation type of the Jacobian algebra P(Q, S) associated to a 2-acyclic quiver Q with non degenerate potential S is invariant under QP-mutations. We prove that, apart from very few exceptions, P(Q, S) is of tame representation type if and only if Q is of finite mutation type. We also show that most quivers Q of finite mutation type admit only one non-degenerate potential up to weak right equivalence. In this case, the isomorphism class of P(Q, S) depends only on Q and not on S. (C) 2015 Published by Elsevier Inc.
引用
收藏
页码:364 / 452
页数:89
相关论文
共 46 条
[1]  
Alim M, 2013, COMMUN MATH PHYS, V323, P1185, DOI 10.1007/s00220-013-1789-8
[2]  
Amiot C, 2011, EMS SER CONGR REP, P1
[3]   CLUSTER CATEGORIES FOR ALGEBRAS OF GLOBAL DIMENSION 2 AND QUIVERS WITH POTENTIAL [J].
Amiot, Claire .
ANNALES DE L INSTITUT FOURIER, 2009, 59 (06) :2525-2590
[4]  
[Anonymous], ARXIVMATH0612139
[5]   ITERATED TILTED ALGEBRAS OF TYPE AN [J].
ASSEM, I ;
SKOWRONSKI, A .
MATHEMATISCHE ZEITSCHRIFT, 1987, 195 (02) :269-290
[6]   Gentle algebras arising from surface triangulations [J].
Assem, Ibrahim ;
Brustle, Thomas ;
Charbonneau-Jodoin, Gabrielle ;
Plamondon, Pierre-Guy .
ALGEBRA & NUMBER THEORY, 2010, 4 (02) :201-229
[7]   On tame weakly symmetric algebras having only periodic modules [J].
Bialkowski, J ;
Skowronski, A .
ARCHIV DER MATHEMATIK, 2003, 81 (02) :142-154
[8]   QUADRATIC DIFFERENTIALS AS STABILITY CONDITIONS [J].
Bridgeland, Tom ;
Smith, Ivan .
PUBLICATIONS MATHEMATIQUES DE L IHES, 2015, (121) :155-278
[9]   MUTATION OF CLUSTER-TILTING OBJECTS AND POTENTIALS [J].
Buan, A. B. ;
Iyama, O. ;
Reiten, I. ;
Smith, D. .
AMERICAN JOURNAL OF MATHEMATICS, 2011, 133 (04) :835-887
[10]  
Buan AB, 2006, INT MATH RES NOTICES, V2006