Wind load and structural analysis for standalone solar parabolic trough collector

被引:15
|
作者
Natraj [1 ]
Rao, B. N. [2 ]
Reddy, K. S. [1 ]
机构
[1] Indian Inst Technol Madras, Dept Mech Engn, Heat Transfer & Thermal Power Lab, Chennai 600036, Tamil Nadu, India
[2] Indian Inst Technol Madras, Dept Civil Engn, Struct Engn Div, Chennai 600036, Tamil Nadu, India
关键词
Solar energy; Wind analysis; Slope deviation; Parabolic trough collector; MIRROR SHAPE; PERFORMANCE; DESIGN; ACCURACY; FLOW;
D O I
10.1016/j.renene.2021.04.007
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Solar energy is one of the emerging technologies and the use of concentrating power technology is increasing in solar power plants. Parabolic trough collector is a concentrating solar power technology that is situated in the open terrain and subjected to wind loads. The structural stability of these devices under such loads determines the ability to accurately concentrate the rays at the absorber tube, which affects the overall optical and thermal efficiencies. A detailed numerical analysis is carried out at different wind loads and design conditions. It is observed that for a change in velocity from 5 m/ s to 25 m/s, slope deviations increase from 1.21 mrad to 3.11 mrad at the surface of the reflector exceeding the shape quality of the mirror panels. Higher yaw angles and pitch angles of 60 degrees and 120 degrees are observed to be decisive in the design of collectors. Roof-mounted collectors experience a 40% higher drag force than ground-mounted collectors at a 0 degrees pitch angle. For the Aluminium trough, the slope deviation at the surface of the reflector is higher by 4.62% than glass. The study will be helpful for engineers and scientists in the design of the parabolic trough collectors. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页码:688 / 703
页数:16
相关论文
共 50 条
  • [31] Numerical Study on Thermal Performance of Solar Parabolic Trough Collector
    Ghasemi, Seyed Ebrahim
    Ranjbar, Ali Akbar
    Ramiar, Abbas
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2013, 7 (01): : 1 - 12
  • [32] Investigation of a star flow insert in a parabolic trough solar collector
    Bellos, Evangelos
    Tzivanidis, Christos
    APPLIED ENERGY, 2018, 224 : 86 - 102
  • [33] THE CONSTRUCTION DESIGN OF HEAT EXCHANGERS OF THE PARABOLIC TROUGH SOLAR COLLECTOR
    Matusov, Jozef
    Hrabovsky, Peter
    Lenhard, Richard
    ENERGY AND CLEAN TECHNOLOGIES CONFERENCE PROCEEDINGS, SGEM 2016, VOL I, 2016, : 697 - 701
  • [34] Thermal analysis of solar parabolic trough with porous disc receiver
    Kumar, K. Ravi
    Reddy, K. S.
    APPLIED ENERGY, 2009, 86 (09) : 1804 - 1812
  • [35] Experimental Investigation of Natural Circulating Solar Energy System Including a Parabolic Trough Solar Collector
    Bayhan, Burhan
    Arslan, Gokhan
    JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 2025, 147 (02):
  • [36] Experimental evaluation of solar still coupled with parabolic trough collector
    Ranjan, Anil
    Dewang, Yogesh
    Raghuwanshi, Jitendra
    Sharma, Vipin
    MATERIALS TODAY-PROCEEDINGS, 2022, 60 : 935 - 938
  • [37] Thermal performance analysis in a parabolic trough solar collector with a novel design of inserted fins
    Al-Aloosi, Waleed
    Alaiwi, Yaser
    Hamzah, Hudhaifa
    CASE STUDIES IN THERMAL ENGINEERING, 2023, 49
  • [38] Analysis and design consideration of solar steam generation plant using parabolic trough collector
    Bataineh, Khaled
    MECHANIKA, 2015, (05): : 384 - 392
  • [39] Experimental and numerical analysis of thermal losses of a parabolic trough solar collector
    Pigozzo Filho, Victor C.
    de Sa, Alexandre B.
    Passos, Julio C.
    Colle, Sergio
    2013 ISES SOLAR WORLD CONGRESS, 2014, 57 : 381 - 390
  • [40] Design and optimization of solar parabolic trough collector with evacuated absorber by grey relational analysis
    Arunkumar S.
    Ramesh K.
    Current Science, 2022, 122 (04): : 410 - 418