MODULI SPACES FOR LINEAR DIFFERENTIAL EQUATIONS AND THE PAINLEVE EQUATIONS

被引:41
作者
Van der Put, Marius [1 ]
Saito, Masa-Hiko [2 ]
机构
[1] Univ Groningen, Inst Math & Comp Sci, NL-9700 AK Groningen, Netherlands
[2] Kobe Univ, Grad Sch Sci, Dept Math, Kobe, Rokko 6578501, Japan
关键词
Moduli space for linear connections; irregular singularities; Stokes matrices; monodromy spaces; isomonodromic deformations; Painleve equations; ISOMONODROMIC DEFORMATIONS; RATIONAL COEFFICIENTS; CUBIC SURFACES; TAU-FUNCTION; VI EQUATION; MONODROMY; GEOMETRY; PAIRS;
D O I
10.5802/aif.2502
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A systematic construction of isomonodromic families of connections of rank two on the Riemarm sphere is obtained by considering the analytic Riemann-Hilbert map RH : M -> R, where M is a moduli space of connections and 72, the monodromy space, is a moduli space for analytic data (i.e., ordinary monodromy, Stokes matrices and links). The assumption that the fibres of RH (i.e., the isomonodromic families) have dimension one, leads to ten moduli spaces M. The induced Painleve equations are computed explicitly. Except for the Pain love VI case, these families have irregular singularities. The analytic classification of irregular singularities yields explicit spaces R,, which are families of affine cubic surfaces, related to Okamoto Painleve pairs. A weak and a strong form of the Riemann-Hilbert problem is treated. Our paper extends the fundamental work of Jimbo-Miwa-Ueno and is related to recent work on Painleve equations.
引用
收藏
页码:2611 / 2667
页数:57
相关论文
共 32 条
[1]  
[Anonymous], 1994, ASPECTMATH E
[2]  
[Anonymous], 1912, Ann. Sci. uNS
[3]  
[Anonymous], 1983, Progr. Math.
[4]  
[Anonymous], GRUNDLEHREN MATH WIS
[5]   From Klein to Painleve via Fourier, Laplace and Jimbo [J].
Boalch, P .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2005, 90 :167-208
[6]   On the generalized Riemann-Hilbert problem with irregular singularities [J].
Bolibruch, A. A. ;
Malek, S. ;
Mitschi, C. .
EXPOSITIONES MATHEMATICAE, 2006, 24 (03) :235-272
[7]   MONODROMY-PRESERVING AND SPECTRUM-PRESERVING DEFORMATIONS .1. [J].
FLASCHKA, H ;
NEWELL, AC .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1980, 76 (01) :65-116
[8]  
Fricke R., 1965, VORLESUNGEN THEORIE, VII
[9]  
Fricke R., 1965, VORLESUNGEN THEORIE, V1
[10]  
Fricke R., 1965, VORLESUNGEN THEORIE, V3