Comparison of radiomic feature aggregation methods for patients with multiple tumors

被引:29
作者
Chang, Enoch [1 ]
Joel, Marina [1 ]
Chang, Hannah Y. [2 ]
Du, Justin [3 ]
Khanna, Omaditya [4 ]
Omuro, Antonio [5 ]
Chiang, Veronica [6 ]
Aneja, Sanjay [1 ,5 ,7 ]
机构
[1] Yale Sch Med, Dept Therapeut Radiol, New Haven, CT 06510 USA
[2] MIT, Cambridge, MA 02139 USA
[3] Yale Coll, New Haven, CT USA
[4] Thomas Jefferson Univ, Dept Neurosurg, Philadelphia, PA 19107 USA
[5] Yale Brain Tumor Ctr, New Haven, CT 06519 USA
[6] Yale Sch Med, Dept Neurosurg, New Haven, CT USA
[7] Yale Sch Med, Ctr Outcomes Res & Evaluat, New Haven, CT 06510 USA
基金
美国国家卫生研究院;
关键词
BRAIN METASTASES; SURVIVAL;
D O I
10.1038/s41598-021-89114-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Radiomic feature analysis has been shown to be effective at analyzing diagnostic images to model cancer outcomes. It has not yet been established how to best combine radiomic features in cancer patients with multifocal tumors. As the number of patients with multifocal metastatic cancer continues to rise, there is a need for improving personalized patient-level prognosis to better inform treatment. We compared six mathematical methods of combining radiomic features of 3,596 tumors in 831 patients with multiple brain metastases and evaluated the performance of these aggregation methods using three survival models: a standard Cox proportional hazards model, a Cox proportional hazards model with LASSO regression, and a random survival forest. Across all three survival models, the weighted average of the largest three metastases had the highest concordance index (95% confidence interval) of 0.627 (0.595-0.661) for the Cox proportional hazards model, 0.628 (0.591-0.666) for the Cox proportional hazards model with LASSO regression, and 0.652 (0.565-0.727) for the random survival forest model. This finding was consistent when evaluating patients with different numbers of brain metastases and different tumor volumes. Radiomic features can be effectively combined to estimate patient-level outcomes in patients with multifocal brain metastases. Future studies are needed to confirm that the volume-weighted average of the largest three tumors is an effective method for combining radiomic features across other imaging modalities and tumor types.
引用
收藏
页数:7
相关论文
共 29 条
[1]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[2]  
COX DR, 1972, J R STAT SOC B, V34, P187
[3]   mRMRe: an R package for parallelized mRMR ensemble feature selection [J].
De Jay, Nicolas ;
Papillon-Cavanagh, Simon ;
Olsen, Catharina ;
El-Hachem, Nehme ;
Bontempi, Gianluca ;
Haibe-Kains, Benjamin .
BIOINFORMATICS, 2013, 29 (18) :2365-2368
[4]   Identification of Non-Small Cell Lung Cancer Sensitive to Systemic Cancer Therapies Using Radiomics [J].
Dercle, Laurent ;
Fronheiser, Matthew ;
Lu, Lin ;
Du, Shuyan ;
Hayes, Wendy ;
Leung, David K. ;
Roy, Amit ;
Wilkerson, Julia ;
Guo, Pingzhen ;
Fojo, Antonio T. ;
Schwartz, Lawrence H. ;
Zhao, Binsheng .
CLINICAL CANCER RESEARCH, 2020, 26 (09) :2151-2162
[5]   Radiomics Response Signature for Identification of Metastatic Colorectal Cancer Sensitive to Therapies Targeting EGFR Pathway [J].
Dercle, Laurent ;
Lu, Lin ;
Schwartz, Lawrence H. ;
Qian, Min ;
Tejpar, Sabine ;
Eggleton, Peter ;
Zhao, Binsheng ;
Piessevaux, Hubert .
JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2020, 112 (09) :902-912
[6]   Minimum redundancy feature selection from microarray gene expression data [J].
Ding, C ;
Peng, HC .
PROCEEDINGS OF THE 2003 IEEE BIOINFORMATICS CONFERENCE, 2003, :523-528
[7]   Multicenter study demonstrates radiomic features derived from magnetic resonance perfusion images identify pseudoprogression in glioblastoma [J].
Elshafeey, Nabil ;
Kotrotsou, Aikaterini ;
Hassan, Ahmed ;
Elshafei, Nancy ;
Hassan, Islam ;
Ahmed, Sara ;
Abrol, Srishti ;
Agarwal, Anand ;
El Salek, Kamel ;
Bergamaschi, Samuel ;
Acharya, Jay ;
Moron, Fanny E. ;
Law, Meng ;
Fuller, Gregory N. ;
Huse, Jason T. ;
Zinn, Pascal O. ;
Colen, Rivka R. .
NATURE COMMUNICATIONS, 2019, 10 (1)
[8]   Deep learning for lung cancer prognostication: A retrospective multi-cohort radiomics study [J].
Hosny, Ahmed ;
Parmar, Chintan ;
Coroller, Thibaud P. ;
Grossmann, Patrick ;
Zeleznik, Roman ;
Kumar, Avnish ;
Bussink, Johan ;
Gillies, Robert J. ;
Mak, Raymond H. ;
Aerts, Hugo J. W. L. .
PLOS MEDICINE, 2018, 15 (11)
[9]   RANDOM SURVIVAL FORESTS [J].
Ishwaran, Hemant ;
Kogalur, Udaya B. ;
Blackstone, Eugene H. ;
Lauer, Michael S. .
ANNALS OF APPLIED STATISTICS, 2008, 2 (03) :841-860
[10]   Radiomic subtyping improves disease stratification beyond key molecular, clinical, and standard imaging characteristics in patients with glioblastoma [J].
Kickingereder, Philipp ;
Neuberger, Ulf ;
Bonekamp, David ;
Piechotta, Paula L. ;
Goetz, Michael ;
Wick, Antje ;
Sill, Martin ;
Kratz, Annekathrin ;
Shinohara, Russell T. ;
Jones, David T. W. ;
Radbruch, Alexander ;
Muschelli, John ;
Unterberg, Andreas ;
Debus, Juergen ;
Schlemmer, Heinz-Peter ;
Herold-Mende, Christel ;
Pfister, Stefan ;
von Deimling, Andreas ;
Wick, Wolfgang ;
Capper, David ;
Maier-Hein, Klaus H. ;
Bendszus, Martin .
NEURO-ONCOLOGY, 2018, 20 (06) :848-857