Homoclinic orbits in a disease transmission model with nonlinear incidence and nonconstant population

被引:50
作者
Derrick, WR [1 ]
Van Den Driessche, P
机构
[1] Univ Montana, Dept Math, Missoula, MT 59802 USA
[2] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3P4, Canada
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2003年 / 3卷 / 02期
关键词
epidemiological model; nonlinear incidence function; saddle-node bifurcation; Hopf bifurcation; homoclinic loop bifurcation;
D O I
10.3934/dcdsb.2003.3.299
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Periodic oscillations are proved for an SIRS disease transmission model in which the size of the population varies and the incidence rate is a nonlinear function. For this particular incidence function, analytical techniques are used to show that, for some parameter values, periodic solutions can arise through a Hopf bifurcation and disappear through a homoclinic loop bifurcation. The existence of periodicity is important as it may indicate different strategies for controlling disease.
引用
收藏
页码:299 / 309
页数:11
相关论文
共 10 条