Review and evaluation of wake loss models for wind energy applications

被引:169
作者
Archer, Cristina L. [1 ]
Vasel-Be-Hagh, Ahmadreza [1 ,2 ]
Yan, Chi [1 ]
Wu, Sicheng [1 ]
Pan, Yang [1 ]
Brodie, Joseph F. [1 ,3 ]
Maguire, A. Eoghan [4 ]
机构
[1] Univ Delaware, Coll Earth Ocean & Environm, Newark, DE 19716 USA
[2] Tennessee Technol Univ, Dept Mech Engn, Cookeville, TN 38505 USA
[3] Rutgers State Univ, Dept Marine & Coastal Sci, New Brunswick, NJ 08901 USA
[4] Vattenfall, Tun Bldg,Holyrood Rd, Edinburgh EH8 8PJ, Midlothian, Scotland
关键词
Wake losses; Analytical wake loss models; Wind energy; Wind farms; FARM LAYOUT OPTIMIZATION; LARGE-EDDY SIMULATION; TURBINE WAKES; OFFSHORE; AXIS; FLOW;
D O I
10.1016/j.apenergy.2018.05.085
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Choosing an appropriate wake loss model (WLM) is a critical task in predicting power production of a wind farm and performing a wind farm layout optimization. Due to their efficient computational performance, analytical WLMs, also called kinematic models, are the most likely candidates for such applications. This paper examines the performance of six well-known analytical WLMs, i.e., Jensen, Larsen, Frandsen, Bastankah and Porte-Agel (BPA), Xie and Archer (XA), and Geometric Model (GM), by comparing their absolute error, bias, correlation coefficient, and ability to predict power production within one standard deviation of the mean observed values at three major commercial wind farms: Lillgrund (offshore, in Sweden), Anholt (offshore, in Denmark) and Norrekr (inland, in Denmark). The three wind farms are chosen to cover many aspects of wind farms, such as offshore and inland conditions, regular and irregular layouts, and closely- to widely-spaced turbines. The conclusions of this review and the recommendations that are put forward provide practical guidelines for using analytical WLMs effectively in future wind energy applications. Overall, the Jensen and XA models stand out for their consistently strong performance and for rarely (Jensen) or never (XA) ranking last for all wind directions at all farms and are therefore the recommended models in general.
引用
收藏
页码:1187 / 1207
页数:21
相关论文
共 62 条
  • [2] Comparison of Engineering Wake Models with CFD Simulations.
    Andersen, S. J.
    Sorensen, J. N.
    Ivanell, S.
    Mikkelsen, R. F.
    [J]. SCIENCE OF MAKING TORQUE FROM WIND 2014 (TORQUE 2014), 2014, 524
  • [3] [Anonymous], 2011, RISOR1772EN RIS NAT
  • [4] [Anonymous], 2007, THESIS
  • [5] [Anonymous], 1988, RISOM2760 RIS NAT LA
  • [6] Archer CL, GEOPHYS RES LETT, V40, DOI [10.1002/gr1.50911, DOI 10.1002/GR1.50911]
  • [7] Meteorology for Coastal/Offshore Wind Energy in the United States Recommendations and Research Needs for the Next 10 Years
    Archer, Cristina L.
    Colle, Brian A.
    Delle Monache, Luca
    Dvorak, Michael J.
    Lundquist, Julie
    Bailey, Bruce H.
    Beaucage, Philipp E.
    Churchfield, Matthew J.
    Fitch, Anna C.
    Kosovic, Branko
    Lee, Sang
    Moriarty, Patrick J.
    Simao, Hugo
    Stevens, Richard J. A. M.
    Veron, Dana
    Zack, John
    [J]. BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2014, 95 (04) : 515 - 519
  • [8] Bailey B., 2016, Wind farm underperformance: Are haircuts still apropos?
  • [9] Comparison of wake model simulations with offshore wind turbine wake profiles measured by sodar
    Barthelmie, R. J.
    Folkerts, L.
    Larsen, G. C.
    Rados, K.
    Pryor, S. C.
    Frandsen, S. T.
    Lange, B.
    Schepers, G.
    [J]. JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2006, 23 (07) : 888 - 901
  • [10] Quantifying the Impact of Wind Turbine Wakes on Power Output at Offshore Wind Farms
    Barthelmie, R. J.
    Pryor, S. C.
    Frandsen, S. T.
    Hansen, K. S.
    Schepers, J. G.
    Rados, K.
    Schlez, W.
    Neubert, A.
    Jensen, L. E.
    Neckelmann, S.
    [J]. JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2010, 27 (08) : 1302 - 1317