Non-Commutative Worlds and Classical Constraints

被引:6
作者
Kauffman, Louis H. [1 ,2 ]
机构
[1] Univ Illinois, Dept Math Stat & Comp Sci, 851 South Morgan St, Chicago, IL 60607 USA
[2] Novosibirsk State Univ, Dept Mech & Math, Novosibirsk 630090, Russia
来源
ENTROPY | 2018年 / 20卷 / 07期
关键词
discrete calculus; iterant; commutator; diffusion constant; Levi-Civita connection; curvature tensor; constraints; Kilmister equation; Bianchi identity; DISCRETE PHYSICS; QUANTUM-MECHANICS; MAXWELL EQUATIONS; FEYNMANS PROOF; SPACE; TIME;
D O I
10.3390/e20070483
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper reviews results about discrete physics and non-commutative worlds and explores further the structure and consequences of constraints linking classical calculus and discrete calculus formulated via commutators. In particular, we review how the formalism of generalized non-commutative electromagnetism follows from a first order constraint and how, via the Kilmister equation, relationships with general relativity follow from a second order constraint. It is remarkable that a second order constraint, based on interlacing the commutative and non-commutative worlds, leads to an equivalent tensor equation at the pole of geodesic coordinates for general relativity.
引用
收藏
页数:25
相关论文
共 36 条
  • [1] Bell JL., 1998, PRIMER INFINITESIMAL
  • [2] Connes A., 1990, NONCOMMUTATIVE GEOME
  • [3] Deakin A.M., 2011, CONT P ANPA 31, P164
  • [4] Deakin A.M., 2018, COSMOLOGICAL THEORIE
  • [5] Deakin A.M., 1999, ASP 2 P ANPA 20
  • [6] Deakin A.M., 2014, SCI ESSAYS HONOR HP, P65
  • [7] QUANTUM-MECHANICS ON A LATTICE AND Q-DEFORMATIONS
    DIMAKIS, A
    MULLERHOISSEN, F
    [J]. PHYSICS LETTERS B, 1992, 295 (3-4) : 242 - 248
  • [8] Dirac P.A.M., 1975, General Theory of Relativity
  • [9] FEYNMAN PROOF OF THE MAXWELL EQUATIONS
    DYSON, FJ
    [J]. AMERICAN JOURNAL OF PHYSICS, 1990, 58 (03) : 209 - 211
  • [10] EDDINGTON AS, 1965, MATH THEORY RELATIVI