Controlling Dielectric and Relaxor-Ferroelectric Properties for Energy Storage by Tuning Pb0.92La0.08Zr0.52Ti0.48O3 Film Thickness

被引:69
作者
Brown, Emery [1 ]
Ma, Chunrui [2 ]
Acharya, Jagaran [2 ]
Ma, Beihai [3 ]
Wu, Judy [2 ]
Li, Jun [1 ]
机构
[1] Kansas State Univ, Dept Chem, Manhattan, KS 66506 USA
[2] Univ Kansas, Dept Phys & Astron, 1082 Malott,1251 Wescoe Hall Dr, Lawrence, KS 66045 USA
[3] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA
基金
美国国家科学基金会;
关键词
solid-state dielectric capacitors; relaxor ferroelectrics; energy storage; PLZT film; THIN-FILMS; DENSITY;
D O I
10.1021/am506247w
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The energy storage properties of Pb0.92La0.08Zr0.52Ti0.48O3 (PLZT) films grown via pulsed laser deposition were evaluated at variable film thickness of 125, 250, 500, and 1000 nm. These films show high dielectric permittivity up to similar to 1200. Cyclic I-V measurements were used to evaluate the dielectric properties of these thin films, which not only provide the total electric displacement, but also separate contributions from each of the relevant components including electric conductivity (D1), dielectric capacitance (D2), and relaxor-ferroelectric domain switching polarization (P). The results show that, as the film thickness increases, the material transits from a linear dielectric to nonlinear relaxor-ferroelectric. While the energy storage per volume increases with the film thickness, the energy storage efficiency drops from similar to 80% to similar to 30%. The PLZT films can be optimized for different energy storage applications by tuning the film thickness to optimize between the linear and nonlinear dielectric properties and energy storage efficiency.
引用
收藏
页码:22417 / 22422
页数:6
相关论文
共 25 条
  • [1] Distinctive contributions to dielectric response of relaxor ferroelectric lead scandium niobate ceramic system
    Bobnar, Vid
    Ursic, Hana
    Casar, Goran
    Drnovsek, Silvo
    [J]. PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2013, 250 (10): : 2232 - 2236
  • [2] Cross LE, 2008, SPRINGER SER MATER S, V114, P131
  • [3] Damjanovic D., 2006, The Science of Hysteresis, P337, DOI DOI 10.1016/B978-012480874-4/50022-1
  • [4] Novel ferroelectric polymer composites with high dielectric constants
    Dang, ZM
    Lin, YH
    Nan, CW
    [J]. ADVANCED MATERIALS, 2003, 15 (19) : 1625 - +
  • [5] A review on the dielectric materials for high energy-storage application
    Hao, Xihong
    [J]. JOURNAL OF ADVANCED DIELECTRICS, 2013, 3 (01)
  • [6] High energy-storage performance in Pb0.91La0.09(Ti0.65Zr0.35)O3 relaxor ferroelectric thin films
    Hao, Xihong
    Wang, Ying
    Yang, Jichun
    An, Shengli
    Xu, Jinbao
    [J]. JOURNAL OF APPLIED PHYSICS, 2012, 112 (11)
  • [7] Lee K, 2001, J KOREAN PHYS SOC, V38, P723
  • [8] Novel ferroelectric capacitor for non-volatile memory storage and biomedical tactile sensor applications
    Liu, Shi Yang
    Chua, Lynn
    Tan, Kian Chuan
    Valavan, S. E.
    [J]. THIN SOLID FILMS, 2010, 518 (24) : E152 - E155
  • [9] Ma B., Ferroelectric PLZT Films Grown on Metal Foils for Power Electronics Applications.pdf
  • [10] Dynamic leakage current compensation in ferroelectric thin-film capacitor structures
    Meyer, R
    Waser, R
    Prume, K
    Schmitz, T
    Tiedke, S
    [J]. APPLIED PHYSICS LETTERS, 2005, 86 (14) : 1 - 3