Blind Deconvolution in Dynamic Contrast-Enhanced MRI and Ultrasound

被引:0
|
作者
Jirik, Radovan [1 ]
Soucek, Karel [2 ,3 ]
Mezl, Martin [4 ,5 ]
Bartos, Michal [4 ,6 ]
Drazanova, Eva [1 ]
Drafi, Frantisek [9 ]
Grossova, Lucie [1 ,4 ]
Kratochvila, Jiri [4 ]
Macicek, Ondrej [4 ]
Nylund, Kim [7 ]
Hampl, Ales [3 ,9 ]
Gilja, Odd Helge [7 ,10 ]
Taxt, Torfinn [8 ]
Starcuk, Zenon, Jr. [1 ]
机构
[1] AS CR, Inst Sci Instruments, Brno, Czech Republic
[2] AS CR, Inst Biophys, Dept Cytokinet 2, Brno, Czech Republic
[3] St Annes Univ Hosp, Int Clin Res Ctr, Ctr Biomol & Cellular Engn, Brno, Czech Republic
[4] Brno Univ Technol, Dept Biomed Engn, CS-61090 Brno, Czech Republic
[5] St Annes Univ Hosp Brno, Int Clin Res Ctr, Ctr Biomed Engn, Brno, Czech Republic
[6] ASCR, Inst Informat Theory & Automat, Prague, Czech Republic
[7] Haukeland Hosp, Natl Ctr Ultrasound Gastroenterol, N-5021 Bergen, Norway
[8] Univ Bergen, Dept Biomed, N-5020 Bergen, Norway
[9] Masaryk Univ, Fac Med, Dept Histol & Embryol, Brno, Czech Republic
[10] Univ Bergen, Dept Clin Med, Bergen, Norway
来源
2014 36TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC) | 2014年
关键词
INPUT FUNCTIONS; IN-VITRO; PERFUSION; PERMEABILITY; PARAMETERS; T-1;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
This paper is focused on quantitative perfusion analysis using MRI and ultrasound. In both MRI and ultrasound, most approaches allow estimation of rate constants (Ktrans, kep for MRI) and indices (AUC, TTP) that are only related to the physiological perfusion parameters of a tissue (e.g. blood flow, vessel permeability) but do not allow their absolute quantification. Recent methods for quantification of these physiological perfusion parameters are shortly reviewed. The main problem of these methods is estimation of the arterial input function (AIF). This paper summarizes and extends the current blind-deconvolution approaches to AIF estimation. The feasibility of these methods is shown on a small preclinical study using both MRI and ultrasound.
引用
收藏
页码:4276 / 4279
页数:4
相关论文
共 50 条
  • [1] Uncertainty estimation in dynamic contrast-enhanced MRI
    Garpebring, Anders
    Brynolfsson, Patrik
    Yu, Jun
    Wirestam, Ronnie
    Johansson, Adam
    Asklund, Thomas
    Karlsson, Mikael
    MAGNETIC RESONANCE IN MEDICINE, 2013, 69 (04) : 992 - 1002
  • [2] Dynamic Contrast-Enhanced (DCE) MRI
    Li, Xin
    Huang, Wei
    Holmes, James H.
    MAGNETIC RESONANCE IMAGING CLINICS OF NORTH AMERICA, 2024, 32 (01) : 47 - 61
  • [3] Prognostication of anaplastic astrocytoma patients: application of contrast leakage information of dynamic susceptibility contrast-enhanced MRI and dynamic contrast-enhanced MRI
    Kim, Hee Soo
    Kwon, Se Lee
    Choi, Seung Hong
    Hwang, Inpyeong
    Kim, Tae Min
    Park, Chul-Kee
    Park, Sung-Hye
    Won, Jae-Kyung
    Kim, Il Han
    Lee, Soon Tae
    EUROPEAN RADIOLOGY, 2020, 30 (04) : 2171 - 2181
  • [4] Prognostication of anaplastic astrocytoma patients: application of contrast leakage information of dynamic susceptibility contrast-enhanced MRI and dynamic contrast-enhanced MRI
    Hee Soo Kim
    Se Lee Kwon
    Seung Hong Choi
    Inpyeong Hwang
    Tae Min Kim
    Chul-Kee Park
    Sung-Hye Park
    Jae-Kyung Won
    Il Han Kim
    Soon Tae Lee
    European Radiology, 2020, 30 : 2171 - 2181
  • [5] Issues of Discontinuity in the Impulse Residue Function for Deconvolution Analysis of Dynamic Contrast-Enhanced MRI Data
    Koh, T. S.
    Cheong, D. L. H.
    Hou, Z.
    MAGNETIC RESONANCE IN MEDICINE, 2011, 66 (03) : 886 - 892
  • [6] Classic models for dynamic contrast-enhanced MRI
    Sourbron, Steven P.
    Buckley, David L.
    NMR IN BIOMEDICINE, 2013, 26 (08) : 1004 - 1027
  • [7] Comparison of Dynamic Contrast-Enhanced MRI and Dynamic Contrast-Enhanced CT Biomarkers in Bladder Cancer
    Naish, J. H.
    McGrath, D. M.
    Bains, L. J.
    Passera, K.
    Roberts, C.
    Watson, Y.
    Cheung, S.
    Taylor, M. B.
    Logue, J. P.
    Buckley, D. L.
    Tessier, J.
    Young, H.
    Waterton, J. C.
    Parker, G. J. M.
    MAGNETIC RESONANCE IN MEDICINE, 2011, 66 (01) : 219 - 226
  • [8] Hepatocellular Carcinoma: Perfusion Quantification With Dynamic Contrast-Enhanced MRI
    Taouli, Bachir
    Johnson, R. Scott
    Hajdu, Cristina H.
    Oei, Marcel T. H.
    Merad, Miriam
    Yee, Herman
    Rusinek, Henry
    AMERICAN JOURNAL OF ROENTGENOLOGY, 2013, 201 (04) : 795 - 800
  • [9] Early Prediction of Response to Neoadjuvant Chemotherapy Using Dynamic Contrast-Enhanced MRI and Ultrasound in Breast Cancer
    Kim, Yunju
    Kim, Sung Hun
    Song, Byung Joo
    Kang, Bong Joo
    Yim, Kwang-il
    Lee, Ahwon
    Nam, Yoonho
    KOREAN JOURNAL OF RADIOLOGY, 2018, 19 (04) : 682 - 691
  • [10] Using Single-Channel Blind Deconvolution to Choose the Most Realistic Pharmacokinetic Model in Dynamic Contrast-Enhanced MR Imaging
    Taxt, Torfinn
    Pavlin, Tina
    Reed, Rolf K.
    Curry, Fitz-Roy
    Andersen, Erling
    Jirik, Radovan
    APPLIED MAGNETIC RESONANCE, 2015, 46 (06) : 643 - 659