On stability and instability of standing waves for 2d-nonlinear Schrodinger equations with point interaction

被引:17
作者
Fukaya, Noriyoshi [1 ]
Georgiev, Vladimir [2 ,3 ,4 ]
Ikeda, Masahiro [5 ,6 ]
机构
[1] Tokyo Univ Sci, Dept Math, Fac Sci, Div 1, Tokyo 1628601, Japan
[2] Univ Pisa, Dipartimento Matemat, Largo B Pontecorvo 5, I-56100 Pisa, Italy
[3] Waseda Univ, Fac Sci & Engn, 3-4-1 Okubo,Shinjuku Ku, Tokyo 1698555, Japan
[4] Bulgarian Acad Sci, Inst Math & Informat, Acad Georgi Bonchev Str,Block 8, Sofia 1113, Bulgaria
[5] RIKEN, Ctr Adv Intelligence Project, Chuo Ku, Tokyo 1030027, Japan
[6] Keio Univ, Fac Sci & Technol, Dept Math, 3-14-1 Hiyoshi,Kohoku Ku, Yokohama, Kanagawa 2238522, Japan
关键词
Nonlinear Schrodinger equation; Point interaction; Standing wave; Stability; Instability; NONLINEAR SCHRODINGER; ASYMPTOTIC STABILITY; SOLITARY WAVES; BOUND-STATES; NLS;
D O I
10.1016/j.jde.2022.03.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study existence and stability properties of ground-state standing waves for two-dimensional nonlinear Schrodinger equation with a point interaction and a focusing power nonlinearity. The Schrodinger operator with a point interaction (-delta alpha)(alpha is an element of R) describes a one-parameter family of self-adjoint realizations of the Laplacian with delta-like perturbation. The operator -delta alpha always has a unique simple negative eigenvalue e alpha. We prove that if the frequency of the standing wave is close to -e(alpha), it is stable. Moreover, if the frequency is sufficiently large, we have the stability in the L-2-subcritical or critical case, while the instability in the L-2-supercritical case. (C)& nbsp;2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:258 / 295
页数:38
相关论文
共 64 条
[1]  
Adami R., ARXIV210909482
[2]   Stability of the standing waves of the concentrated NLSE in dimension two [J].
Adami, Riccardo ;
Carlone, Raffaele ;
Correggi, Michele ;
Tentarelli, Lorenzo .
MATHEMATICS IN ENGINEERING, 2021, 3 (02)
[3]   SCATTERING FOR THE L2 SUPERCRITICAL POINT NLS [J].
Adami, Riccardo ;
Fukuizumi, Reika ;
Holmer, Justin .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 374 (01) :35-60
[4]   Blow-up for the pointwise NLS in dimension two: Absence of critical power [J].
Adami, Riccardo ;
Carlone, Raffaele ;
Correggi, Michele ;
Tentarelli, Lorenzo .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (01) :1-37
[5]   Orbital and asymptotic stability for standing waves of a nonlinear Schrodinger equation with concentrated nonlinearity in dimension three [J].
Adami, Riccardo ;
Noja, Diego ;
Ortoleva, Cecilia .
JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (01)
[6]   Existence of dynamics for a 1D NLS equation perturbed with a generalized point defect [J].
Adami, Riccardo ;
Noja, Diego .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (49)
[7]  
ALBEVERIO S, 1981, J OPERAT THEOR, V6, P313
[8]  
ALBEVERIO S, 1984, J OPERAT THEOR, V12, P101
[9]  
ALBEVERIO S, 1987, J REINE ANGEW MATH, V380, P87
[10]  
Albeverio S., 1982, ANN I H POINCARE SEC, V37, P1