Weak compactness and representation in variable exponent Lebesgue spaces on infinite measure spaces

被引:2
作者
Hernandez, Francisco L. [1 ,2 ]
Ruiz, Cesar [1 ,2 ]
Sanchiz, Mauro [1 ,2 ]
机构
[1] Univ Complutense Madrid, IMI, Fac Math, Madrid 28040, Spain
[2] Univ Complutense Madrid, Dept Math Anal & Appl Math, Fac Math, Madrid 28040, Spain
关键词
SETS;
D O I
10.1007/s13398-022-01298-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Relative weakly compact sets and weak convergence in variable exponent Lebesgue spaces L-p(.) (Omega) for infinite measure spaces (Omega, mu) are characterized. Criteria recently obtained in [14] for finite measures are here extended to the infinite measure case. In particular, it is showed that the inclusions between variable exponent Lebesgue spaces for infinite measures are never L-weakly compact. A lattice isometric representation of L-p(.) (Omega) as a variable exponent space L-q(.) (0, 1) is given.
引用
收藏
页数:17
相关论文
共 23 条
  • [1] WEAKLY COMPACT SETS IN ORLICZ SPACES
    ANDO, T
    [J]. CANADIAN JOURNAL OF MATHEMATICS, 1962, 14 (01): : 170 - &
  • [2] Bandaliev RA, 2012, AZERBAIJAN J MATH, V2, P119
  • [3] RELATIVELY COMPACT SETS IN VARIABLE-EXPONENT LEBESGUE SPACES
    Bandaliyev, Rovshan
    Gorka, Przemyslaw
    [J]. BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2018, 12 (02) : 331 - 346
  • [4] Bennett C., 1988, INTERPOLATION OPERAT
  • [5] Cohn D.L., 2013, MEASURE THEORY, DOI DOI 10.1007/978-1-4614-6956-8
  • [6] CruzUribe DV, 2013, APPL NUMER HARMON AN, DOI 10.1007/978-3-0348-0548-3
  • [7] Lebesgue and Sobolev Spaces with Variable Exponents
    Diening, Lars
    Harjulehto, Petteri
    Hasto, Peter
    Ruzicka, Michael
    [J]. LEBESGUE AND SOBOLEV SPACES WITH VARIABLE EXPONENTS, 2011, 2017 : 1 - +
  • [8] Weak compactness criteria in symmetric spaces of measurable operators
    Dodds, PG
    Sukochev, FA
    Schlüchtermann, G
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2001, 131 : 363 - 384
  • [9] Riesz-Kolmogorov theorem in variable exponent Lebesgue spaces and its applications to Riemann-Liouville fractional differential equations
    Dong, Baohua
    Fu, Zunwei
    Xu, Jingshi
    [J]. SCIENCE CHINA-MATHEMATICS, 2018, 61 (10) : 1807 - 1824
  • [10] Dunford N., 1958, LINEAR OPERATORS 1