Parallel transport of fiber mode structure: Orbit-orbit interaction

被引:0
作者
Chakravarthy, Pradeep T. [1 ]
Naik, Dinesh N. [1 ]
Viswanathan, Nirmal K. [1 ]
机构
[1] Univ Hyderabad, Sch Phys, Hyderabad 500046, Andhra Prades, India
来源
COMPLEX LIGHT AND OPTICAL FORCES XI | 2017年 / 10120卷
关键词
Orbital Berry phase; Parallel transport; Orbit-orbit interaction; Two-mode fiber; BERRY TOPOLOGICAL PHASE; OPTICAL-FIBER; GENERATION; PHOTON;
D O I
10.1117/12.2252060
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
That a paraxial light beam with spin angular momentum (SAM, sigma) propagating in a helical trajectory leads to the appearance of Rytov-Vladimirsky-Berry (RVB) phase has been a topic of extensive research for the past several decades. Recently, using geometrical optics approximation, it was shown that variations in the beam propagation direction leads to generic parallel transport law -a beam with intrinsic orbital angular momentum (IOAM, l) behaves topologically similar to polarized beam containing only SAM but of magnitude proportional to the total angular momentum TAM = l +/- sigma. By considering the interaction of a beam with IOAM, propagating in a non-planar trajectory and hence with extrinsic orbital angular momentum (EOAM), in an inhomogeneous medium we study the parallel transport of fiber mode structure as a manifestation of orbit-orbit interaction. The resulting rotation of the transverse beam structure due to the parallel transport of the LP fiber mode propagating along non-planar ray direction is attributed to the ` orbital' Berry phase. The mode transformation is simulated based on the interference of the vector-vortex modes excited in the TMF. The LP mode rotation angle calculated as a function of the beam position at the fiber input is expected to show topological features that can be mapped onto orbital Poincare sphere.
引用
收藏
页数:6
相关论文
共 50 条
[21]   Interaction of spin-orbit angular momentum in the tight focusing of structured light [J].
Guo, Ji-Xiang ;
Wang, Wen-Yue ;
Cheng, Tian-Yu ;
Lu, Jia-Qi .
FRONTIERS IN PHYSICS, 2022, 10
[22]   Spin-orbit coupling mediated transverse spin mode rotation in a uniaxial crystal [J].
Sreedharan, Anagha ;
Viswanathan, Nirmal K. .
OPTICS LETTERS, 2022, 47 (15) :3768-3771
[23]   Direct and reciprocal spin-orbit interaction effects in a graded-index medium [J].
Chakravarthy, T. Pradeep ;
Viswanathan, Nirmal K. .
OSA CONTINUUM, 2019, 2 (05) :1576-1589
[24]   Self-induced nonlinear spin-orbit interaction of light in liquid crystals [J].
El Ketara, Mohamed ;
Brasselet, Etienne .
OPTICS LETTERS, 2012, 37 (04) :602-604
[25]   Helicity Multiplexed Spin-Orbit Interaction in Metasurface for Colorized and Encrypted Holographic Display [J].
Zhang, Xiaohu ;
Pu, Mingbo ;
Jin, Jinjin ;
Li, Xiong ;
Gao, Ping ;
Ma, Xiaoliang ;
Wang, Changtao ;
Luo, Xiangang .
ANNALEN DER PHYSIK, 2017, 529 (12)
[26]   Spin-orbit interaction of light: When twisted light meets twisted metasurfaces [J].
Zhang, Wenshuai ;
Wang, Yongsheng ;
Xu, Dingyu ;
Luo, Hailu .
PHYSICAL REVIEW A, 2023, 107 (04)
[27]   Towards colloidal spintronics through Rashba spin-orbit interaction in lead sulphide nanosheets [J].
Moayed, Mohammad Mehdi Ramin ;
Bielewicz, Thomas ;
Zöllner, Martin Sebastian ;
Herrmann, Carmen ;
Klinke, Christian .
NATURE COMMUNICATIONS, 2017, 8
[28]   Optical conductance and polarization of the monolayer graphene in the presence of Rashba spin orbit interaction and electromagnetic wave [J].
Naifar, A. ;
Duque, C. A. ;
Hasanirokh, K. .
PHYSICA B-CONDENSED MATTER, 2025, 714
[29]   Four-vector optical Dirac equation and spin-orbit interaction of structured light [J].
Feng, Longlong ;
Wu, Qianfan .
PHYSICAL REVIEW A, 2022, 106 (04)
[30]   The analysis of the vortical and mode structure after the fiber [J].
Fadeyeva, Tatyana A. ;
Alexeyev, Alexey N. ;
Kotlyarov, Kinil I. ;
Volyar, Alexander V. .
SEVENTH INTERNATIONAL CONFERENCE ON CORRELATION OPTICS, 2006, 6254