Bayesian Joint Input-State Estimation for Nonlinear Systems
被引:7
作者:
Rogers, Timothy J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sheffield, Dept Mech Engn, Sheffield S10 2TG, S Yorkshire, EnglandUniv Sheffield, Dept Mech Engn, Sheffield S10 2TG, S Yorkshire, England
Rogers, Timothy J.
[1
]
Worden, Keith
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sheffield, Dept Mech Engn, Sheffield S10 2TG, S Yorkshire, EnglandUniv Sheffield, Dept Mech Engn, Sheffield S10 2TG, S Yorkshire, England
Worden, Keith
[1
]
Cross, Elizabeth J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sheffield, Dept Mech Engn, Sheffield S10 2TG, S Yorkshire, EnglandUniv Sheffield, Dept Mech Engn, Sheffield S10 2TG, S Yorkshire, England
Cross, Elizabeth J.
[1
]
机构:
[1] Univ Sheffield, Dept Mech Engn, Sheffield S10 2TG, S Yorkshire, England
来源:
VIBRATION
|
2020年
/
3卷
/
03期
基金:
英国工程与自然科学研究理事会;
关键词:
bayesian;
Gaussian process;
latent force model;
nonlinear;
particle Gibbs;
sequential monte carlo;
KALMAN FILTER;
IDENTIFICATION;
PARAMETER;
D O I:
10.3390/vibration3030020
中图分类号:
TH [机械、仪表工业];
学科分类号:
0802 ;
摘要:
This work suggests a solution for joint input-state estimation for nonlinear systems. The task is to recover the internal states of a nonlinear oscillator, the displacement and velocity of the system, and the unmeasured external forces applied. To do this, a Gaussian process latent force model is developed for nonlinear systems. The model places a Gaussian process prior over the unknown input forces for the system, converts this into a state-space form and then augments the nonlinear system with these additional hidden states. To perform inference over this nonlinear state-space model a particle Gibbs approach is used combining a "Particle Gibbs with Ancestor Sampling" Markov kernel for the states and a Metropolis-Hastings update for the hyperparameters of the Gaussian process. This approach is shown to be effective in a numerical case study on a Duffing oscillator where the internal states and the unknown forcing are recovered, each with a normalised mean-squared error less than 0.5%. It is also shown how this Bayesian approach allows uncertainty quantification of the estimates of the states and inputs which can be invaluable in further engineering analyses.
机构:
Univ Bristol, Bristol BS8 1TH, Avon, EnglandUniv British Columbia, Dept Stat, Vancouver, BC V6T 1Z2, Canada
Andrieu, Christophe
Doucet, Arnaud
论文数: 0引用数: 0
h-index: 0
机构:
Univ British Columbia, Dept Stat, Vancouver, BC V6T 1Z2, Canada
Inst Stat Math, Tokyo, JapanUniv British Columbia, Dept Stat, Vancouver, BC V6T 1Z2, Canada
Doucet, Arnaud
Holenstein, Roman
论文数: 0引用数: 0
h-index: 0
机构:Univ British Columbia, Dept Stat, Vancouver, BC V6T 1Z2, Canada
机构:
Univ Bristol, Bristol BS8 1TH, Avon, EnglandUniv British Columbia, Dept Stat, Vancouver, BC V6T 1Z2, Canada
Andrieu, Christophe
Doucet, Arnaud
论文数: 0引用数: 0
h-index: 0
机构:
Univ British Columbia, Dept Stat, Vancouver, BC V6T 1Z2, Canada
Inst Stat Math, Tokyo, JapanUniv British Columbia, Dept Stat, Vancouver, BC V6T 1Z2, Canada
Doucet, Arnaud
Holenstein, Roman
论文数: 0引用数: 0
h-index: 0
机构:Univ British Columbia, Dept Stat, Vancouver, BC V6T 1Z2, Canada