Image coding using robust quantization for noisy digital transmission

被引:25
作者
Chen, Q [1 ]
Fischer, TR
机构
[1] 3 Co US Robot, Skokie, IL USA
[2] Washington State Univ, Sch Elect Engn & Comp Sci, Pullman, WA 99164 USA
基金
美国国家科学基金会;
关键词
combined source-channel coding; quantization; subband image coding;
D O I
10.1109/83.663494
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A robust quantizer is developed for encoding memoryless sources and transmission over the binary symmetric channel (BSC). The system combines channel optimized scalar quantization (COSQ) with all-pass filtering, the latter performed using a binary phase-scrambling/descrambling method. Applied to a broad class of sources, the robust quantizer achieves the same performance as the Gaussian COSQ for the memoryless Gaussian source. This quantizer is used in image coding for transmission over a BSC, The peak signal-to-noise ratio (PSNR) performance degrades gracefully as the channel bit error rate increases.
引用
收藏
页码:496 / 505
页数:10
相关论文
共 29 条
[1]  
AYANOGLU E, 1987, IEEE T INFORM THEORY, V33, P856
[2]  
DIXON RC, 1984, SPREAD SPECTRUM SYST, P56
[3]   OPTIMAL QUANTIZER DESIGN FOR NOISY CHANNELS - AN APPROACH TO COMBINED SOURCE-CHANNEL CODING [J].
FARVARDIN, N ;
VAISHAMPAYAN, V .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1987, 33 (06) :827-838
[4]   ON THE PERFORMANCE AND COMPLEXITY OF CHANNEL-OPTIMIZED VECTOR QUANTIZERS [J].
FARVARDIN, N ;
VAISHAMPAYAN, V .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1991, 37 (01) :155-160
[5]   A STUDY OF VECTOR QUANTIZATION FOR NOISY CHANNELS [J].
FARVARDIN, N .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1990, 36 (04) :799-809
[6]  
FARVARDIN N, 1994, P IEEE INT C IMAGE P, V1, P598
[7]   A PYRAMID VECTOR QUANTIZER [J].
FISCHER, TR .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1986, 32 (04) :568-583
[8]  
Gersho A., 1992, VECTOR QUANTIZATION
[9]  
HAGEN R, UNPUB IEEE T INFORM
[10]   THE CENTRAL LIMIT THEOREM FOR DEPENDENT RANDOM VARIABLES [J].
HOEFFDING, W ;
ROBBINS, H .
DUKE MATHEMATICAL JOURNAL, 1948, 15 (03) :773-780