VITALI'S THEOREM WITHOUT UNIFORM BOUNDEDNESS

被引:2
作者
Nguyen Quang Dieu [1 ]
Phung Van Manh [1 ]
Pham Hien Bang [2 ]
Le Thanh Hung [3 ]
机构
[1] Hanoi Natl Univ Educ, 136 Xuan Thuy St, Hanoi, Vietnam
[2] Thai Nguyen Univ Educ, Luong Ngoc Quyen, Thai Nguyen, Vietnam
[3] Coll Educ, Trung Trac, Vinh Phuc, Vietnam
关键词
Rapid convergence; convergence in capacity; pluripolar set; relative capacity;
D O I
10.5565/PUBLMAT_60216_03
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let {f(m)}m >= 1 be a sequence of holomorphic functions defined on a bounded domain D subset of C-n or a sequence of rational functions (1 <= deg r(m) <= m) defined on C-n. We are interested in finding sufficient conditions to ensure the convergence of {f(m)}m >= 1 on a large set provided the convergence holds pointwise on a not too small set. This type of result is inspired from a theorem of Vitali which gives a positive answer for uniformly bounded sequence.
引用
收藏
页码:311 / 334
页数:24
相关论文
共 11 条
  • [1] [Anonymous], 1994, PROGR MATH
  • [2] Polya's inequalities, global uniform integrability and the size of plurisubharmonic lemniscates
    Benelkourchi, S
    Jennane, B
    Zeriahi, A
    [J]. ARKIV FOR MATEMATIK, 2005, 43 (01): : 85 - 112
  • [3] Blocki Z., 2002, UNFINISHED LECT NOTE
  • [4] On the convergence in capacity of rational approximants
    Bloom, T
    [J]. CONSTRUCTIVE APPROXIMATION, 2001, 17 (01) : 91 - 102
  • [5] Chirka E. M., 1976, MAT SBORNIK, V99, P615
  • [6] COLWELL P, 1966, P AM MATH SOC, V17, P582
  • [7] DAVIDSON KR, 1983, AM MATH MON, V90, P391, DOI 10.2307/2975578
  • [8] Gonchar A. A., 1974, Mat. Sb. (N.S.), V93, P296
  • [9] KLIMEK M, 1991, LONDON MATH SOC MONO, V6
  • [10] SADULLAEV A, 1984, MATH USSR SB+, V125, P271