COMBINED THE DATA-DRIVEN WITH MODEL-DRIVEN STRAGEGY: A NOVEL FRAMEWORK FOR MIXED NOISE REMOVAL IN HYPERSPECTRAL IMAGE

被引:3
作者
Zhang, Qiang [1 ]
Sun, Fujun [2 ]
Yuan, Qiangqiang [3 ]
Li, Jie [3 ]
Shen, Huanfeng [4 ]
Zhang, Liangpei [1 ]
机构
[1] Wuhan Univ, State Key Lab LIESMARS, Wuhan, Peoples R China
[2] Beijing Electromech Engn Inst, Beijing, Peoples R China
[3] Wuhan Univ, Sch Geodesy & Geomat, Wuhan, Peoples R China
[4] Wuhan Univ, Sch Resource & Environm Sci, Wuhan, Peoples R China
来源
IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM | 2020年
基金
中国国家自然科学基金;
关键词
Hyperspectral; mixed noise removal; model-driven; data-driven; collaboratively; SPARSE REPRESENTATION;
D O I
10.1109/IGARSS39084.2020.9323115
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we present a novel hyperspectral image (HSI) denoising method especially for mixed noise removal. The proposed method combines both data-driven with model-driven strategy via a deep spatiospectral variational structure. The mixed noise estimation and removal are collaboratively derived through fusing the Bayesian spatio-spectral posterior and deep learning model. The framework can both utilize the logicality of traditional model-driven methods, and the high efficiency of data-driven methods for parameters optimizing. Simulated and actual experiments demonstrate that the presented method outperforms other existing methods for HSI mixed noise removal, on both reconstructing effects and time-consuming.
引用
收藏
页码:2667 / 2670
页数:4
相关论文
共 9 条
  • [1] Denoising Hyperspectral Image With Non-i.i.d. Noise Structure
    Chen, Yang
    Cao, Xiangyong
    Zhao, Qian
    Meng, Deyu
    Xu, Zongben
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2018, 48 (03) : 1054 - 1066
  • [2] Noise reduction of hyperspectral imagery using hybrid spatial-spectral derivative-domain wavelet shrinkage
    Othman, H
    Qian, SE
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (02): : 397 - 408
  • [3] Recent advances in techniques for hyperspectral image processing
    Plaza, Antonio
    Benediktsson, Jon Atli
    Boardman, Joseph W.
    Brazile, Jason
    Bruzzone, Lorenzo
    Camps-Valls, Gustavo
    Chanussot, Jocelyn
    Fauvel, Mathieu
    Gamba, Paolo
    Gualtieri, Anthony
    Marconcini, Mattia
    Tilton, James C.
    Trianni, Giovanna
    [J]. REMOTE SENSING OF ENVIRONMENT, 2009, 113 : S110 - S122
  • [4] Hyperspectral Imagery Restoration Using Nonlocal Spectral-Spatial Structured Sparse Representation With Noise Estimation
    Qian, Yuntao
    Ye, Minchao
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2013, 6 (02) : 499 - 515
  • [5] Noise Reduction in Hyperspectral Imagery: Overview and Application
    Rasti, Behnood
    Scheunders, Paul
    Ghamisi, Pedram
    Licciardi, Giorgio
    Chanussot, Jocelyn
    [J]. REMOTE SENSING, 2018, 10 (03)
  • [6] Hyperspectral Image Denoising Employing a Spatial-Spectral Deep Residual Convolutional Neural Network
    Yuan, Qiangqiang
    Zhang, Qiang
    Li, Jie
    Shen, Huanfeng
    Zhang, Liangpei
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (02): : 1205 - 1218
  • [7] Hyperspectral Image Restoration Using Low-Rank Matrix Recovery
    Zhang, Hongyan
    He, Wei
    Zhang, Liangpei
    Shen, Huanfeng
    Yuan, Qiangqiang
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (08): : 4729 - 4743
  • [8] Hybrid Noise Removal in Hyperspectral Imagery With a Spatial-Spectral Gradient Network
    Zhang, Qiang
    Yuan, Qiangqiang
    Li, Jie
    Li, Xinxin
    Shen, Huanfeng
    Zhang, Liangpei
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (10): : 7317 - 7329
  • [9] Hyperspectral Image Denoising via Sparse Representation and Low-Rank Constraint
    Zhao, Yong-Qiang
    Yang, Jingxiang
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (01): : 296 - 308