Hybrid Proteins with Short Conformational Epitopes of the Receptor-Binding Domain of SARS-CoV-2 Spike Protein Promote Production of Virus-Neutralizing Antibodies When Used for Immunization

被引:1
|
作者
Karyagina, Anna S. [1 ,2 ,3 ]
Gromov, Alexander, V [1 ]
Grunina, Tatyana M. [1 ,2 ]
Lyaschuk, Alexander M. [1 ]
Poponova, Maria S. [1 ]
Kleymenov, Denis A. [1 ]
Strukova, Natalia, V [1 ]
Generalova, Maria S. [1 ]
Ryazanova, Anna, V [1 ]
Galushkina, Zoya M. [1 ]
Dobrynina, Olga Yu [1 ]
Bolshakova, Tatyana N. [1 ]
Sergeeva, Maria, V [4 ]
Romanovskaya-Romanko, Ekaterina A. [4 ]
Krasilnikov, Igor, V [5 ]
Subbotina, Marina E. [1 ,2 ]
Lunin, Vladimir G. [1 ,2 ]
机构
[1] Minist Hlth Russian Federat, Gamaleya Natl Res Ctr Epidemiol & Microbiol, Moscow 123098, Russia
[2] All Russia Res Inst Agr Biotechnol, Moscow 127550, Russia
[3] Lomonosov Moscow State Univ, Belozersky Inst Phys Chem Biol, Moscow 119992, Russia
[4] Minist Hlth Russian Federat, Inst Influenza, St Petersburg 197376, Russia
[5] FMBA, St Petersburg Inst Vaccines & Sera, St Petersburg 198320, Russia
基金
俄罗斯基础研究基金会;
关键词
SARS-CoV-2; S protein; RBD; RBM; epitope vaccine; epitope; aldolase; EOSINOPHILIC INFILTRATION; INFECTION; VACCINES;
D O I
10.1134/S0006297922040022
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Based on the previously developed approach, hybrid recombinant proteins containing short conformational epitopes (a.a. 144-153, 337-346, 414-425, 496-507) of the receptor-binding domain (RBD) of SARS-CoV-2 Spike protein (S protein) were synthesized in Escherichia coli cells as potential components of epitope vaccines. Selected epitopes are involved in protein-protein interactions in the S protein complexes with neutralizing antibodies and ACE2 (angiotensin-converting enzyme 2). The recombinant proteins were used for immunization of mice (three doses with 2-week intervals), and the immunogenicity of protein antigens and ability of the resulting sera to interact with inactivated SARS-CoV-2 and RBD produced in eukaryotic cells were examined. All recombinant proteins showed high immunogenicity; the highest titer in the RBD binding assay was demonstrated by the serum obtained after immunization with the protein containing epitope 414-425. At the same time, the titers of sera obtained against other proteins in the RBD and inactivated virus binding assays were significantly lower than the titers of sera obtained with the previously produced four proteins containing the loop-like epitopes 452-494 and 470-491, the conformation of which was fixed with a disulfide bond. We also studied activation of cell-mediated immunity by the recombinant proteins that was monitored as changes in the levels of cytokines in the splenocytes of immunized mice. The most pronounced increase in the cytokine synthesis was observed in response to the proteins containing epitopes with disulfide bonds (452-494, 470-491), as well as epitopes 414-425 and 496-507. For some recombinant proteins with short conformational epitopes, adjuvant optimization allowed to obtained mouse sera displaying virus-neutralizing activity in the microneutralization assay with live SARS-CoV-2 (hCoV-19/Russia/StPetersburg-3524/2020 EPI_ISL_415710 GISAID). The results obtained can be used to develop epitope vaccines for prevention of COVID-19 and other viral infections.
引用
收藏
页码:319 / 330
页数:12
相关论文
共 50 条
  • [1] Hybrid Proteins with Short Conformational Epitopes of the Receptor-Binding Domain of SARS-CoV-2 Spike Protein Promote Production of Virus-Neutralizing Antibodies When Used for Immunization
    Anna S. Karyagina
    Alexander V. Gromov
    Tatyana M. Grunina
    Alexander M. Lyaschuk
    Maria S. Poponova
    Denis A. Kleymenov
    Natalia V. Strukova
    Maria S. Generalova
    Anna V. Ryazanova
    Zoya M. Galushkina
    Olga Yu. Dobrynina
    Tatyana N. Bolshakova
    Maria V. Sergeeva
    Ekaterina A. Romanovskaya-Romanko
    Igor V. Krasilnikov
    Marina E. Subbotina
    Vladimir G. Lunin
    Biochemistry (Moscow), 2022, 87 : 319 - 330
  • [2] A Novel Conserved Linear Neutralizing Epitope on the Receptor-Binding Domain of the SARS-CoV-2 Spike Protein
    Hua, Rong-Hong
    Zhang, Shu-Jian
    Niu, Bei
    Ge, Jin-Ying
    Lan, Ting
    Bu, Zhi-Gao
    MICROBIOLOGY SPECTRUM, 2023, 11 (04):
  • [3] Identification of a potent SARS-CoV-2 neutralizing nanobody targeting the receptor-binding domain of the spike protein
    Liu, Chen
    Hadiatullah, Hadiatullah
    Yuchi, Zhiguang
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 281
  • [4] Neutralizing and Enhancing Epitopes of the SARS-CoV-2 Receptor-Binding Domain (RBD) Identified by Nanobodies
    Kaewchim, Kanasap
    Glab-ampai, Kittirat
    Mahasongkram, Kodchakorn
    Saenlom, Thanatsaran
    Thepsawat, Watayagorn
    Chulanetra, Monrat
    Choowongkomon, Kiattawee
    Sookrung, Nitat
    Chaicumpa, Wanpen
    VIRUSES-BASEL, 2023, 15 (06):
  • [5] Mutation informatics: SARS-CoV-2 receptor-binding domain of the spike protein
    Verma, Saroj
    Patil, Vaishali M.
    Gupta, Manish K.
    DRUG DISCOVERY TODAY, 2022, 27 (10)
  • [6] A potent neutralizing nanobody targeting a unique epitope on the receptor-binding domain of SARS-CoV-2 spike protein
    Zhang, Yuting
    Wang, Dan
    Xiang, Qi
    Hu, Xiaohui
    Zhang, Yuting
    Wu, Lijie
    Zhang, Zhaoyong
    Wang, Yanqun
    Zhao, Jincun
    McCormick, Peter J.
    Fu, Jinheng
    Fu, Yang
    Zhang, Jin
    Jiang, Haihai
    Li, Jian
    VIROLOGY, 2024, 589
  • [7] On the interactions of the receptor-binding domain of SARS-CoV-1 and SARS-CoV-2 spike proteins with monoclonal antibodies and the receptor ACE2
    Giron, Carolina Correa
    Laaksonen, Aatto
    Barroso da Silva, Fernando L.
    VIRUS RESEARCH, 2020, 285
  • [8] A therapeutic neutralizing antibody targeting receptor binding domain of SARS-CoV-2 spike protein
    Kim, Cheolmin
    Ryu, Dong-Kyun
    Lee, Jihun
    Kim, Young-Il
    Seo, Ji-Min
    Kim, Yeon-Gil
    Jeong, Jae-Hee
    Kim, Minsoo
    Kim, Jong-In
    Kim, Pankyeom
    Bae, Jin Soo
    Shim, Eun Yeong
    Lee, Min Seob
    Kim, Man Su
    Noh, Hanmi
    Park, Geun-Soo
    Park, Jae Sang
    Son, Dain
    An, Yongjin
    Lee, Jeong No
    Kwon, Ki-Sung
    Lee, Joo-Yeon
    Lee, Hansaem
    Yang, Jeong-Sun
    Kim, Kyung-Chang
    Kim, Sung Soon
    Woo, Hye-Min
    Kim, Jun-Won
    Park, Man-Seong
    Yu, Kwang-Min
    Kim, Se-Mi
    Kim, Eun-Ha
    Park, Su-Jin
    Jeong, Seong Tae
    Yu, Chi Ho
    Song, Youngjo
    Gu, Se Hun
    Oh, Hanseul
    Koo, Bon-Sang
    Hong, Jung Joo
    Ryu, Choong-Min
    Park, Wan Beom
    Oh, Myoung-don
    Choi, Young Ki
    Lee, Soo-Young
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [9] Characterization of a neutralizing antibody that recognizes a loop region adjacent to the receptor-binding interface of the SARS-CoV-2 spike receptor-binding domain
    Anzai, Itsuki
    Fujita, Junso
    Ono, Chikako
    Kosaka, Yoichiro
    Miyamoto, Yuki
    Shichinohe, Shintaro
    Takada, Kosuke
    Torii, Shiho
    Taguwa, Shuhei
    Suzuki, Koichiro
    Makino, Fumiaki
    Kajita, Tadahiro
    Inoue, Tsuyoshi
    Namba, Keiichi
    Watanabe, Tokiko
    Matsuura, Yoshiharu
    MICROBIOLOGY SPECTRUM, 2024, 12 (04)
  • [10] Antibodies to neutralising epitopes synergistically block the interaction of the receptor-binding domain of SARS-CoV-2 to ACE 2
    Pandey, Manisha
    Ozberk, Victoria
    Eskandari, Sharareh
    Shalash, Ahmed O.
    Joyce, Michael A.
    Saffran, Holly A.
    Day, Christopher J.
    Lepletier, Ailin
    Spillings, Belinda L.
    Mills, Jamie-Lee
    Calcutt, Ainslie
    Fan, Fan
    Williams, James T.
    Stanisic, Danielle, I
    Hattingh, Laetitia
    Gerrard, John
    Skwarczynski, Mariusz
    Mak, Johnson
    Jennings, Michael P.
    Toth, Istvan
    Tyrrell, D. Lorne
    Good, Michael F.
    CLINICAL & TRANSLATIONAL IMMUNOLOGY, 2021, 10 (03)