Complex multiplication of exactly solvable Calabi-Yau varieties

被引:6
作者
Lynker, M
Schimmrigk, R
Stewart, S
机构
[1] Indiana Univ, South Bend, IN 46634 USA
[2] Kennesaw State Univ, Kennesaw, GA 30144 USA
基金
美国国家科学基金会;
关键词
varieties over finite fields; L-functions; zeta functions; arithmetic varieties; fundamental strings; conformal field theory; compactification;
D O I
10.1016/j.nuclphysb.2004.08.007
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We propose a conceptual framework that leads to an abstract characterization for the exact solvability of Calabi-Yau varieties in terms of abelian varieties with complex multiplication. The abelian manifolds are derived from the cohomology of the Calabi-Yau manifold, and the conformal field theoretic quantities of the underlying string emerge from the number theoretic structure induced on the varieties by the complex multiplication symmetry. The geometric structure that provides a conceptual interpretation of the relation between geometry and conformal field theory is discrete, and turns out to be given by the torsion points on the abelian varieties. (C) 2004 Published by Elsevier B.V.
引用
收藏
页码:463 / 489
页数:27
相关论文
共 50 条
  • [1] Quadratic bodies in areas of higher conguence. I. (Arithmetic part)
    Artin, E
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1924, 19 : 153 - 206
  • [2] Borcea C., 1992, ESSAYS MIRROR MANIFO
  • [3] On the modularity of elliptic curves over Q: Wild 3-adic exercises
    Breuil, C
    Conrad, B
    Diamond, F
    Taylor, R
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 14 (04) : 843 - 939
  • [4] CALABI-YAU MANIFOLDS IN WEIGHTED P4
    CANDELAS, P
    LYNKER, M
    SCHIMMRIGK, R
    [J]. NUCLEAR PHYSICS B, 1990, 341 (02) : 383 - 402
  • [5] DELIGNE P, 1977, COHOMOLOGIE ETALE, P569
  • [6] Deligne P., 1974, Publ. Math. IHES, DOI [10.1007/BF02684373. MR0340258 (49 #5013, DOI 10.1007/BF02684373.MR0340258(49#5013]
  • [7] DEURING M, 1953, NACHR AKAD WISS GOTT, P88
  • [8] DEURING M, 1956, NACHR AKAD WISS GOTT, P37
  • [9] DEURING M, 1955, NACHR AKAD WISS GOTT, P13
  • [10] DEURING M, 1957, NACHR AKAD WISS GOTT, P55