Imputation of Missing Data with Ordinary Kriging for Enhancing Fault Detection and Diagnosis

被引:6
作者
Ardakani, Mohammadhamed [1 ,3 ]
Shokry, Ahmed [1 ,3 ]
Saki, Ghazal [5 ]
Escudero, Gerard [2 ,4 ]
Graells, Moises [1 ,4 ]
Espuna, Antonio [1 ,3 ]
机构
[1] Univ Politecn Cataluna, Dept Chem Engn, Barcelona, Spain
[2] Univ Politecn Cataluna, Dept Comp Sci, Barcelona, Spain
[3] ETSEIB, Ave Diagonal 647, Barcelona 08028, Spain
[4] EUETIB, Comte Urgell 187, Barcelona 08036, Spain
[5] Bakhtar Petrochem Co, Tehran, Iran
来源
26TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING (ESCAPE), PT B | 2016年 / 38B卷
关键词
Fault Detection and Diagnosis; Missing Data; Imputation; Kriging; Artificial Neural Networks;
D O I
10.1016/B978-0-444-63428-3.50234-4
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
This work investigates the application of different metamodeling techniques for enhancing the information quality of the process history databases, through smoothing the noise/outliers and imputing missing data that usually contaminate such databases. The information quality enhancements are aimed at improving the training of the data-driven classification techniques used for Fault Detection and Diagnosis (FDD) of the process. A simulation case study of a Continuous Stirred Tank-Reactor (CSTR) is used to produce training datasets containing noisy, outlier and missing values. Three metamodeling techniques namely; Ordinary Kriging (OK), Artificial Neural Networks (ANN) and Polynomial Regression (PR) are used to smooth the noise and outliers, and to impute the missing values. Next, the FDD performance of the Support Vector Machines (SVM) classifier is compared when it trained with the recuperated datasets by the metamodels, while datasets have noisy, outlier and missing values. The results show high enhancement in the performance of the SVM when it trained with the recuperated data using the metamodels, especially when OK is exploited.
引用
收藏
页码:1377 / 1382
页数:6
相关论文
共 8 条
[1]   Fault diagnosis of chemical processes with incomplete observations: A comparative study [J].
Askarian, M. ;
Escudero, G. ;
Graells, M. ;
Zarghami, R. ;
Jalali-Farahani, F. ;
Mostoufi, N. .
COMPUTERS & CHEMICAL ENGINEERING, 2016, 84 :104-116
[2]  
Chen H., 1995, Proceedings of the Third European Control Conference. ECC 95, P3247
[3]   Incremental support vector machine construction [J].
Domeniconi, C ;
Gunopulos, D .
2001 IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2001, :589-592
[4]   Pattern classification with missing data: a review [J].
Garcia-Laencina, Pedro J. ;
Sancho-Gomez, Jose-Luis ;
Figueiras-Vidal, Anibal R. .
NEURAL COMPUTING & APPLICATIONS, 2010, 19 (02) :263-282
[5]   A semi-supervised approach to fault diagnosis for chemical processes [J].
Monroy, Isaac ;
Benitez, Raul ;
Escudero, Gerard ;
Graells, Moises .
COMPUTERS & CHEMICAL ENGINEERING, 2010, 34 (05) :631-642
[6]  
Shokry A, 2012, WD SCI P COMP ENG, V7, P483
[7]  
Shokry A, 2015, COMPUT-AIDED CHEM EN, V37, P191
[8]  
Vapnik V., 2013, NATURE STAT LEARNING