Van der Waals interactions in a dielectric with continuously varying dielectric function

被引:21
|
作者
Podgornik, R
Parsegian, VA
机构
[1] NICHD, Lab Phys & Struct Biol, NIH, Bethesda, MD 20892 USA
[2] Univ Ljubljana, Dept Phys, Ljubljana 1000, Slovenia
[3] Jozef Stefan Inst, Dept Theoret Phys, SI-1000 Ljubljana, Slovenia
来源
JOURNAL OF CHEMICAL PHYSICS | 2004年 / 121卷 / 15期
关键词
D O I
10.1063/1.1796234
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We formulate and evaluate the van der Waals part of the free energy due to a dielectric profile that varies continuously throughout the space between two interacting bodies. Not considering the work needed to create the inhomogeneous dielectric profile, focusing only on that part of the free energy affected by the inhomogeneity, we compare the ensuing interaction free energy with that of the original Lifshitz formulation with its step function changes at material boundaries and uniform dielectric medium. Rather than the monotonically varying attraction between like bodies given by the original formulation, the inhomogeneous continuous dielectric function leads to attractions as well as repulsions. The Lifshitz result emerges naturally in the limit of separations much larger than the thickness of the interfaces. (C) 2004 American Institute of Physics.
引用
收藏
页码:7467 / 7473
页数:7
相关论文
共 50 条
  • [31] Vertical dielectric screening of few-layer van der Waals semiconductors
    Koo, Jahyun
    Gao, Shiyuan
    Lee, Hoonkyung
    Yang, Li
    NANOSCALE, 2017, 9 (38) : 14540 - 14547
  • [32] Giant negative electrostriction and dielectric tunability in a van der Waals layered ferroelectric
    Neumayer, Sabine M.
    Eliseev, Eugene A.
    Susner, Michael A.
    Tselev, Alexander
    Rodriguez, Brian J.
    Brehm, John A.
    Pantelides, Sokrates T.
    Panchapakesan, Ganesh
    Jesse, Stephen
    Kalinin, Sergei, V
    McGuire, Michael A.
    Morozovska, Anna N.
    Maksymovych, Petro
    Balke, Nina
    PHYSICAL REVIEW MATERIALS, 2019, 3 (02):
  • [33] Bismuth oxychloride as a van der Waals dielectric for 2D electronics
    Kondusamy, Aswin L. N.
    Liu, Wenhao
    Roy, Joy
    Zhu, Xiangyu
    Smith, Connor, V
    Wang, Xinglu
    Young, Chadwin
    Kim, Moon J.
    Wallace, Robert M.
    Vandenberghe, William G.
    Lv, Bing
    NANOTECHNOLOGY, 2025, 36 (18)
  • [34] Imaging van der Waals Interactions
    Han, Zhumin
    Wei, Xinyuan
    Xu, Chen
    Chiang, Chi-lun
    Zhang, Yanxing
    Wu, Ruqian
    Ho, W.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2016, 7 (24): : 5205 - 5211
  • [35] Nanoscale van der Waals interactions
    Cole, Milton W.
    Velegol, Darrell
    Kim, Hye-Young
    Lucas, Amand A.
    MOLECULAR SIMULATION, 2009, 35 (10-11) : 849 - 866
  • [36] The Volumetric Source Function: Looking Inside van der Waals Interactions
    Christian Tantardini
    Adam A. L. Michalchuk
    Artem Samtsevich
    Carlo Rota
    Alexander G. Kvashnin
    Scientific Reports, 10
  • [37] The Volumetric Source Function: Looking Inside van der Waals Interactions
    Tantardini, Christian
    Michalchuk, Adam A. L.
    Samtsevich, Artem
    Rota, Carlo
    Kvashnin, Alexander G.
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [38] Dipolar interactions enhanced by two-dimensional dielectric screening in few-layer van der Waals structures
    Hou, Yuhang
    Yu, Hongyi
    2D MATERIALS, 2024, 11 (02)
  • [39] Optical and dielectric properties of MoO3 nanosheets for van der Waals heterostructures
    Andres-Penares, Daniel
    Brotons-Gisbert, Mauro
    Bonato, Cristian
    Sanchez-Royo, Juan F.
    Gerardot, Brian D.
    APPLIED PHYSICS LETTERS, 2021, 119 (22)
  • [40] Laser-writable high-k dielectric for van der Waals nanoelectronics
    Peimyoo, N.
    Barnes, M. D.
    Mehew, J. D.
    De Sanctis, A.
    Amit, I.
    Escolar, J.
    Anastasiou, K.
    Rooney, A. P.
    Haigh, S. J.
    Russo, S.
    Craciun, M. F.
    Withers, F.
    SCIENCE ADVANCES, 2019, 5 (01):