共 50 条
Managing B2B customer churn, retention and profitability
被引:68
|作者:
Jahromi, Ali Tamaddoni
[1
]
Stakhovych, Stanislav
[1
]
Ewing, Michael
[2
]
机构:
[1] Monash Univ, Dept Mkt, Caulfield, Vic 3145, Australia
[2] Deakin Univ, Fac Business & Law, Burwood, Vic 3125, Australia
关键词:
B2B customer churn;
Data mining;
Non-contractual setting;
Retention campaign;
Profit;
BASE ANALYSIS;
PREDICTION;
MANAGEMENT;
SERVICES;
BEHAVIOR;
MODELS;
SATISFACTION;
DEFECTION;
FRAMEWORK;
ATTRITION;
D O I:
10.1016/j.indmarman.2014.06.016
中图分类号:
F [经济];
学科分类号:
02 ;
摘要:
It is now widely accepted that firms should direct more effort into retaining existing customers than to attracting new ones. To achieve this, customers likely to defect need to be identified so that they can be approached with tailored incentives or other bespoke retention offers. Such strategies call for predictive models capable of identifying customers with higher probabilities of defecting in the relatively near future. A review of the extant literature on customer churn models reveals that although several predictive models have been developed to model churn in B2C contexts, the B2B context in general, and non-contractual settings in particular, have received less attention in this regard. Therefore, to address these gaps, this study proposes a data-mining approach to model noncontractual customer churn in B2B contexts. Several modeling techniques are compared in terms of their ability to predict true churners. The best performing data-mining technique (boosting) is then applied to develop a profit maximizing retention campaign. Results confirm that the model driven approach to churn prediction and developing retention strategies outperforms commonly used managerial heuristics. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:1258 / 1268
页数:11
相关论文