Kidney Segmentation in Renal Magnetic Resonance Imaging-Current Status and Prospects

被引:27
作者
Zoellner, Frank G. [1 ]
Kocinski, Marek [2 ,4 ]
Hansen, Laura [1 ]
Golla, Alena-Kathrin [1 ]
Trbalic, Amira Serifovic [3 ]
Lundervold, Arvid [2 ]
Materka, Andrzej [4 ]
Rogelj, Peter [5 ]
机构
[1] Heidleberg Univ, Mannheim Inst Intelligent Syst Med Comp Assisted, Med Fac Mannheim, D-68167 Mannheim, Germany
[2] Univ Bergen, Mohn Med Imaging & Visualizat Ctr, Dep Biomed, NO-5020 Bergen, Norway
[3] Univ Tuzla, Fac Elect Engn, Tuzla 75000, Bosnia & Herceg
[4] Lodz Univ Technol, Inst Elect, PL-90924 Lodz, Poland
[5] Univ Primorska, Fac Math Nat Sci & Informat Technol, Koper 6000, Slovenia
关键词
Image segmentation; Kidney; Magnetic resonance imaging; Diseases; Manuals; Deep learning; Biomarkers; Renal MRI; image segmentation; deep learning; AUTOMATED SEGMENTATION; SEMIAUTOMATIC SEGMENTATION; TUMOR SEGMENTATION; POLYCYSTIC KIDNEYS; MR-IMAGES; DISEASE; VOLUME; SYSTEM; ACQUISITION; EXTRACTION;
D O I
10.1109/ACCESS.2021.3078430
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Magnetic resonance imaging has achieved an increasingly important role in the clinical work-up of renal diseases such chronic kidney disease (CKD). A large panel of parameters have been proposed to diagnose CKD among them total kidney volume (TKV) which recently qualified as biomarker. Volume estimation in renal MRI is based on image segmentation of the kidney and/or its compartments. Beyond volume estimation renal segmentation supports also the quantification of other MR based parameters such as perfusion or filtration. The aim of the present article is to discuss the recent existing literature on renal image segmentation techniques and show today's limitations of the proposed techniques that might hinder clinical translation. We also provide pointers to open source software related to renal image segmentation.
引用
收藏
页码:71577 / 71605
页数:29
相关论文
共 140 条
[1]  
Abdulahi WA, 2015, AFRICON
[2]   Unsupervised Medical Image Segmentation Based on the Local Center of Mass [J].
Aganj, Iman ;
Harisinghani, Mukesh G. ;
Weissleder, Ralph ;
Fischl, Bruce .
SCIENTIFIC REPORTS, 2018, 8
[3]  
Ahn H., 2017, J MAGN RESON IMAG, V42, P60
[4]  
Ahn H, 2020, J MAGN RESON IMAG, P163
[5]  
Akagunduz E., 2021, ARXIV191210230
[6]   Multilevel thresholding for image segmentation through a fast statistical recursive algorithm [J].
Arora, S. ;
Acharya, J. ;
Verma, A. ;
Panigrahi, Prasanta K. .
PATTERN RECOGNITION LETTERS, 2008, 29 (02) :119-125
[7]   Novel Methodology to Evaluate Renal Cysts in Polycystic Kidney Disease [J].
Bae, Kyongtae T. ;
Sun, Hongliang ;
Lee, June Goo ;
Bae, Kyungsoo ;
Wang, Jinhong ;
Tao, Cheng ;
Chapman, Arlene B. ;
Torres, Vicente E. ;
Grantham, Jared J. ;
Mrug, Michal ;
Bennett, William M. ;
Flessner, Michael F. ;
Landsittel, Doug P. .
AMERICAN JOURNAL OF NEPHROLOGY, 2014, 39 (03) :210-217
[8]   Segmentation of Individual Renal Cysts from MR Images in Patients with Autosomal Dominant Polycystic Kidney Disease [J].
Bae, Kyungsoo ;
Park, Bumwoo ;
Sun, Hongliang ;
Wang, Jinhong ;
Tao, Cheng ;
Chapman, Arlene B. ;
Torres, Vicente E. ;
Grantham, Jared J. ;
Mrug, Michal ;
Bennett, William M. ;
Flessner, Michael F. ;
Landsittel, Doug P. ;
Bae, Kyongtae T. .
CLINICAL JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2013, 8 (07) :1089-1097
[9]   MRI-derived markers for predicting a decline in renal function in patients with autosomal dominant polycystic kidney disease [J].
Banach-Ambroziak, Ewa ;
Jankowska, Magdalena ;
Grzywinska, Malgorzata ;
Pienkowska, Joanna ;
Szurowska, Edyta .
POLISH JOURNAL OF RADIOLOGY, 2019, 84 :E289-E294
[10]   Consensus-based technical recommendations for clinical translation of renal BOLD MRI [J].
Bane, Octavia ;
Mendichovszky, Iosif A. ;
Milani, Bastien ;
Dekkers, Ilona A. ;
Deux, Jean-Francois ;
Eckerbom, Per ;
Grenier, Nicolas ;
Hall, Michael E. ;
Inoue, Tsutomu ;
Laustsen, Christoffer ;
Lerman, Lilach O. ;
Liu, Chunlei ;
Morrell, Glen ;
Pedersen, Michael ;
Pruijm, Menno ;
Sadowski, Elizabeth A. ;
Seeliger, Erdmann ;
Sharma, Kanishka ;
Thoeny, Harriet ;
Vermathen, Peter ;
Wang, Zhen J. ;
Serafin, Zbigniew ;
Zhang, Jeff L. ;
Francis, Susan T. ;
Sourbron, Steven ;
Pohlmann, Andreas ;
Fain, Sean B. ;
Prasad, Pottumarthi V. .
MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE, 2020, 33 (01) :199-215