CHROMATIC PROPERTIES OF THE PANCAKE GRAPHS

被引:4
作者
Konstantinova, Elena [1 ,2 ]
机构
[1] Sobolev Inst Math, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Novosibirsk 630090, Russia
关键词
Pancake graph; Cayley graphs; symmetric group; chromatic number; total chromatic number; NUMBER; CYCLES;
D O I
10.7151/dmgt.1978
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Chromatic properties of the Pancake graphs Pn, n >= 2, that are Cayley graphs on the symmetric group Symn generated by prefix-reversals are investigated in the paper. It is proved that for any n >= 3 the total chromatic number of P-n is n, and it is shown that the chromatic index of Pn is n - 1. We present upper bounds on the chromatic number of the Pancake graphs P-n, which improve Brooks bound for n >= 7 and Katlins bound for n >= 28. Algorithms of a total n-coloring and a proper (n - 1)-coloring are given.
引用
收藏
页码:777 / 787
页数:11
相关论文
共 13 条
[1]   UPPER BOUND OF A GRAPHS CHROMATIC NUMBER, DEPENDING ON GRAPHS DEGREE AND DENSITY [J].
BORODIN, OV ;
KOSTOCHKA, AV .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1977, 23 (2-3) :247-250
[2]   On colouring the nodes of a network [J].
Brooks, RL .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1941, 37 :194-197
[3]   ANOTHER BOUND ON CHROMATIC NUMBER OF A GRAPH [J].
CATLIN, PA .
DISCRETE MATHEMATICS, 1978, 24 (01) :1-6
[4]  
CATLIN PA, 1978, DISCRETE MATH, V22, P81, DOI 10.1016/0012-365X(78)90049-3
[5]  
Chu, 2006, P 23 WORKSH COMB MAT, P85
[6]   Efficient dominating sets in Cayley graphs [J].
Dejter, IJ ;
Serra, O .
DISCRETE APPLIED MATHEMATICS, 2003, 129 (2-3) :319-328
[7]  
Dweighter H., 1975, Am. Math. Mon., V82, P1010
[8]  
Johansson A., 1996, ASYMPTOTIC CHOICE NU, P91
[9]   ON THE EMBEDDING OF CYCLES IN PANCAKE GRAPHS [J].
KANEVSKY, A ;
FENG, C .
PARALLEL COMPUTING, 1995, 21 (06) :923-936
[10]  
Konstantinova Elena, 2013, Information Theory, Combinatorics, and Search Theory. In Memory of Rudolf Ahlswede, P472, DOI 10.1007/978-3-642-36899-8_23