NeuroLines: A Subway Map Metaphor for Visualizing Nanoscale Neuronal Connectivity

被引:47
作者
Al-Awami, Ali K. [1 ]
Beyer, Johanna [2 ]
Strobelt, Hendrik [2 ]
Kasthuri, Narayanan [3 ]
Lichtman, Jeff W. [3 ]
Pfister, Hanspeter [2 ]
Hadwiger, Markus [1 ]
机构
[1] KAUST, Thuwal, Saudi Arabia
[2] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[3] Harvard Univ, Ctr Brain Sci, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
Connectomics; Neuroscience; Data Abstraction; Multi-Trees; Focus plus Context; RECONSTRUCTION; EXPLORATION; ANNOTATION; NETWORKS;
D O I
10.1109/TVCG.2014.2346312
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We present NeuroLines, a novel visualization technique designed for scalable detailed analysis of neuronal connectivity at the nanoscale level. The topology of 3D brain tissue data is abstracted into a multi-scale, relative distance-preserving subway map visualization that allows domain scientists to conduct an interactive analysis of neurons and their connectivity. Nanoscale connectomics aims at reverse-engineering the wiring of the brain. Reconstructing and analyzing the detailed connectivity of neurons and neurites (axons, dendrites) will be crucial for understanding the brain and its development and diseases. However, the enormous scale and complexity of nanoscale neuronal connectivity pose big challenges to existing visualization techniques in terms of scalability. NeuroLines offers a scalable visualization framework that can interactively render thousands of neurites, and that supports the detailed analysis of neuronal structures and their connectivity. We describe and analyze the design of NeuroLines based on two real-world use-cases of our collaborators in developmental neuroscience, and investigate its scalability to large-scale neuronal connectivity data.
引用
收藏
页码:2369 / 2378
页数:10
相关论文
共 46 条
[1]  
Anderson JR, 2011, J MICROSC-OXFORD, V241, P13, DOI 10.1111/j.1365-2818.20.10.03402.x
[2]   L-neuron: A modeling tool for the efficient generation and parsimonious description of dendritic morphology [J].
Ascoli, GA ;
Krichmar, JL .
NEUROCOMPUTING, 2000, 32 :1003-1011
[3]   Small-world brain networks [J].
Bassett, Danielle Smith ;
Bullmore, Edward T. .
NEUROSCIENTIST, 2006, 12 (06) :512-523
[4]   ConnectomeExplorer: Query-Guided Visual Analysis of Large Volumetric Neuroscience Data [J].
Beyer, Johanna ;
Al-Awami, Ali ;
Kasthuri, Narayanan ;
Lichtman, Jeff W. ;
Pfister, Hanspeter ;
Hadwiger, Markus .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2013, 19 (12) :2868-2877
[5]   Exploring the Connectome Petascale Volume Visualization of Microscopy Data Streams [J].
Beyer, Johanna ;
Hadwiger, Markus ;
Al-Awami, Ali ;
Jeong, Won-Ki ;
Kasthuri, Narayanan ;
Lichtman, Jeff W. ;
Pfister, Hanspeter .
IEEE COMPUTER GRAPHICS AND APPLICATIONS, 2013, 33 (04) :50-61
[6]   Evaluation of Artery Visualizations for Heart Disease Diagnosis [J].
Borkin, Michelle A. ;
Gajos, Krzysztof Z. ;
Peters, Amanda ;
Mitsouras, Dimitrios ;
Melchionna, Simone ;
Rybicki, Frank J. ;
Feldman, Charles L. ;
Pfister, Hanspeter .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2011, 17 (12) :2479-2488
[7]  
Bremm S., 2011, 2011 IEEE Conference on Visual Analytics Science and Technology, P31, DOI 10.1109/VAST.2011.6102439
[8]   Towards neural circuit reconstruction with volume electron microscopy techniques [J].
Briggman, Kevin L. ;
Denk, Winfried .
CURRENT OPINION IN NEUROBIOLOGY, 2006, 16 (05) :562-570
[9]   BrainGazer - Visual Queries for Neurobiology Research [J].
Bruckner, Stefan ;
Solteszova, Veronika ;
Groeller, M. Eduard ;
Hladuvka, Jiri ;
Buehler, Katja ;
Yu, Jai Y. ;
Dickson, Barry J. .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2009, 15 (06) :1497-1504
[10]   Complex brain networks: graph theoretical analysis of structural and functional systems [J].
Bullmore, Edward T. ;
Sporns, Olaf .
NATURE REVIEWS NEUROSCIENCE, 2009, 10 (03) :186-198