The bound state solutions of the D-dimensional Schrodinger equation for the Hulthen potential within SUSY quantum mechanics

被引:21
作者
Ahmadov, H. I. [1 ]
Qocayeva, M. V. [2 ]
Huseynova, N. Sh. [3 ]
机构
[1] Baku State Univ, Fac Appl Math & Cybernet, Dept Equat Math Phys, Z Khalilov St 23, AZ-1148 Baku, Azerbaijan
[2] Azerbaijan Natl Acad Sci, Inst Phys, H Javid Ave 131, AZ-1143 Baku, Azerbaijan
[3] Baku State Univ, Inst Appl Math, Z Khalilov St 23, AZ-1148 Baku, Azerbaijan
关键词
D-dimensional space; Nikiforov-Uvarov method; Hulthen potential; supers-ymmetric quantum mechanics; SCREENED COULOMB POTENTIALS; SHIFTED 1/N EXPANSION; ARBITRARY L-STATE; QUANTIZATION RULE; ANGULAR-MOMENTUM; APPROXIMATION; ENERGIES; SPECTRA;
D O I
10.1142/S0218301317500288
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
In this paper, the analytical solutions of the D-dimensional hyper-radial Schrodinger equation are studied in great detail for the Hulthen potential. Within the framework, a novel improved scheme to surmount centrifugal term, the energy eigenvalues and corresponding radial wave functions are found for any l orbital angular momentum case within the context of the Nikiforov-Uvarov (NU) and supersymmetric quantum mechanics (SUSY QM) methods. In this way, based on these methods, the same expressions are obtained for the energy eigenvalues, and the expression of radial wave functions transforming each other is demonstrated. The energy levels are worked out and the corresponding normalized eigenfunctions are obtained in terms of orthogonal polynomials for arbitrary l states for D-dimensional space.
引用
收藏
页数:18
相关论文
共 53 条
[11]   Hypergeometric-type differential equations: second kind solutions and related integrals [J].
Area, I ;
Godoy, E ;
Ronveaux, A ;
Zarzo, A .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 157 (01) :93-106
[12]  
Avery J., 1989, Hyperspherical Harmonics
[13]   The bound state solutions of the D-dimensional Schrodinger equation for the Woods-Saxon potential [J].
Badalov, V. H. .
INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS, 2016, 25 (01)
[14]   ANY l-STATE ANALYTICAL SOLUTIONS OF THE KLEIN-GORDON EQUATION FOR THE WOODS-SAXON POTENTIAL [J].
Badalov, V. H. ;
Ahmadov, H. I. ;
Badalov, S. V. .
INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS, 2010, 19 (07) :1463-1475
[15]   ANALYTICAL SOLUTIONS OF THE SCHRODINGER EQUATION WITH THE WOODS-SAXON POTENTIAL FOR ARBITRARY l STATE [J].
Badalov, V. H. ;
Ahmadov, H. I. ;
Ahmadov, A. I. .
INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS, 2009, 18 (03) :631-641
[16]  
Badalov V. H., ARXIVMATHPH11114734
[17]   Any l-state solutions of the Hulthen potential by the asymptotic iteration method [J].
Bayrak, O. ;
Kocak, G. ;
Boztosun, I. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (37) :11521-11529
[18]  
Bhalekar S, 2016, APPL COMPUT MATH-BAK, V15, P331
[19]   PATH-INTEGRAL TREATMENT OF THE HULTHEN POTENTIAL [J].
CAI, JM ;
CAI, PY ;
INOMATA, A .
PHYSICAL REVIEW A, 1986, 34 (06) :4621-4628
[20]  
COOPER F, 1995, PHYS REP, V251, P268