Vascular endothelial growth factor transcriptional activation is mediated by hypoxia-inducible factor 1α, HDM2, and p70S6K1 in response to phosphatidylinositol 3-kinase/AKT signaling

被引:178
作者
Skinner, HD
Zheng, JZ
Fang, J
Agani, F
Jiang, BH [1 ]
机构
[1] W Virginia Univ, Mary Babb Randolph Canc Ctr, Dept Microbiol Immunol & Cell Biol, Morgantown, WV 26506 USA
[2] Case Western Reserve Univ, Dept Anat, Sch Med, Cleveland, OH 44106 USA
关键词
D O I
10.1074/jbc.M404097200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Vascular endothelial growth factor (VEGF) expression is elevated in ovarian and other cancer cells. However, the mechanism that causes the increase in VEGF expression still remains to be elucidated. In this study, we demonstrated that activation of PI3K signaling mediated VEGF protein expression at the transcriptional level through hypoxia-inducible factor 1alpha (HIF-1alpha) expression in human ovarian cancer cells. We found that inhibition of PI3K activity by LY294002 decreased VEGF transcriptional activation and that forced expression of AKT completely reversed the inhibitory effect. HDM2 and p70S6K1 are two downstream targets of AKT that mediate growth factor-induced VEGF transcriptional activation and HIF-1alpha expression. The inhibition of PI3K by LY294002 inhibited p70S6K1 and HDM2 activity in the cells. Forced expression of p70S6K1 or HDM2 reversed LY294002-inhibited VEGF transcriptional activation and HIF-1alpha expression. This study identifies a potential novel mechanism responsible for increased VEGF expression in ovarian cancer cells. It also indicates the important role of VEGF and HIF-1 in ovarian tumorigenesis and angiogenesis, which is mediated by the PI3K/AKT/HDM2 and AKT/p70S6K1 pathways in ovarian cancer cells.
引用
收藏
页码:45643 / 45651
页数:9
相关论文
共 45 条
[1]  
AbuJawdeh GM, 1996, LAB INVEST, V74, P1105
[2]   Lack of evidence for the involvement of the phosphoinositide 3-kinase/Akt pathway in the activation of hypoxia-inducible factors by low oxygen tension [J].
Alvarez-Tejado, M ;
Alfranca, A ;
Aragonés, J ;
Vara, A ;
Landázuri, MO ;
del Peso, L .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (16) :13508-13517
[3]  
Birner P, 2000, CANCER RES, V60, P4693
[4]  
Birner P, 2001, CANCER, V92, P165, DOI 10.1002/1097-0142(20010701)92:1<165::AID-CNCR1305>3.0.CO
[5]  
2-F
[6]   EXPRESSION OF VASCULAR ENDOTHELIAL GROWTH-FACTOR AND ITS RECEPTORS FLT AND KDR IN OVARIAN-CARCINOMA [J].
BOOCOCK, CA ;
CHARNOCKJONES, DS ;
SHARKEY, AM ;
MCLAREN, J ;
BARKER, PJ ;
WRIGHT, KA ;
TWENTYMAN, PR ;
SMITH, SK .
JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 1995, 87 (07) :506-516
[7]   Levels of hypoxia-inducible factor-1α during breast carcinogenesis [J].
Bos, R ;
Zhong, H ;
Hanrahan, CF ;
Mommers, ECM ;
Semenza, GL ;
Pinedo, HM ;
Abeloff, MD ;
Simons, JW ;
van Diest, PJ ;
van der Wall, E .
JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2001, 93 (04) :309-314
[8]   Insulin-like growth factor 1 induces hypoxia-inducible factor 1-mediated vascular endothelial growth factor expression, which is dependent on MAP kinase and phosphatidylinositol 3-kinase signaling in colon cancer cells [J].
Fukuda, R ;
Hirota, K ;
Fan, F ;
Do Jung, Y ;
Ellis, LM ;
Semenza, GL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (41) :38205-38211
[9]   Vascular endothelial growth factor in ovarian cancer. [J].
Hazelton D.A. ;
Hamilton T.C. .
Current Oncology Reports, 1999, 1 (1) :59-63
[10]  
Hu LM, 2002, CANCER RES, V62, P1087