Optical fiber hydrogen sensor based on evaporated Pt/WO3 film

被引:43
|
作者
Li, Zhi [1 ]
Yang, Minghong [1 ,2 ]
Dai, Jixiang [1 ]
Wang, Gaopeng [1 ]
Huang, Chujia [1 ]
Tang, Jianguan [1 ]
Hu, Wenbin [1 ]
Song, Han [3 ]
Huang, Pengcheng [3 ]
机构
[1] Wuhan Univ Technol, Natl Engn Lab Fiber Opt Sensing Technol, Wuhan 430070, Peoples R China
[2] Wuhan Univ Technol, Minist Educ, Lab Fiber Opt Sensing Technol & Informat Proc, Wuhan 430070, Peoples R China
[3] Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, Wuhan 430074, Peoples R China
基金
美国国家科学基金会;
关键词
Fiber optic hydrogen sensor; Thermal evaporation; Response value; GASOCHROMIC COLORATION; THIN-FILMS; WO3; RELIABILITY; PERFORMANCE;
D O I
10.1016/j.snb.2014.09.093
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
A reflective fiber optic hydrogen sensor based on evaporated Pt/WO3 film was proposed and experimentally demonstrated in this paper. The optical fiber hydrogen detection system employs a dual-path design of reflective intensity measurement, and therefore to eliminate the noise suffered from light source fluctuation, fiber loss fluctuation, and temperature. The hydrogen sensitive Pt/WO3 film deposited on fused quartz wafer was realized by vacuum thermal evaporation of WO3 and then magnetron sputtering of Pt. The correlation between hydrogen concentration and reflective intensity were investigated and analyzed. Amorphous Pt/WO3 film with porous micro-structure shows good hydrogen sensitive performance. The response value of the proposed sensor increases nonlinearly with hydrogen concentration and the resolution of this type of sensor in low range (0-0.5%) of hydrogen concentration is larger than that in high range (0.5-4%). It provided a simple, economical and effective method to obtain a high sensitivity and good repeatability for detecting a relatively low hydrogen concentration at the room temperature. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:564 / 569
页数:6
相关论文
共 50 条
  • [1] Highly sensitive fiber grating hydrogen sensor based on hydrogen-doped Pt/WO3
    Wang, Chaoqin
    Han, Zewen
    Wang, Chenxiang
    Peng, Gang-Ding
    Rao, Yun-Jiang
    Gong, Yuan
    SENSORS AND ACTUATORS B-CHEMICAL, 2024, 404
  • [2] Fiber Optical Hydrogen Sensor Based on WO3-Pd2Pt-Pt Nanocomposite Films
    Dai, Jixiang
    Li, Yi
    Ruan, Hongbo
    Ye, Zhuang
    Chai, Nianyao
    Wang, Xuewen
    Qiu, Shuchang
    Bai, Wei
    Yang, Minghong
    NANOMATERIALS, 2021, 11 (01) : 1 - 9
  • [3] TBAOH intercalated WO3 for high-performance optical fiber hydrogen sensor
    Ye, Zhuang
    Ruan, Hongbo
    Hu, Xiangyang
    Dai, Jixiang
    Luo, Xiaoqiao
    Yang, Minghong
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (65) : 28204 - 28211
  • [4] A Hydrogen Gas Sensor Based on Pt/Nanostructured WO3/SiC Schottky Diode
    Shafiei, Mahnaz
    Sadek, Abu Z.
    Yu, Jerry
    Latham, Kay
    Breedon, Michael
    McCulloch, Dougal
    Kalantar-zadeh, Kourosh
    Wlodarski, Wojtek
    SENSOR LETTERS, 2011, 9 (01) : 11 - 15
  • [5] Performance of fiber Bragg grating hydrogen sensor coated with Pt-loaded WO3 coating
    Dai, Jixiang
    Yang, Minghong
    Yang, Zhi
    Li, Zhi
    Wang, Yao
    Wang, Gaopeng
    Zhang, Yi
    Zhuang, Zhi
    SENSORS AND ACTUATORS B-CHEMICAL, 2014, 190 : 657 - 663
  • [6] Sagnac interferometer hydrogen sensor based on panda fiber with Pt-loaded WO3/SiO2 coating
    Xu, Ben
    Zhao, C. L.
    Yang, Fan
    Gong, Huaping
    Wang, D. N.
    Dai, JiXiang
    Yang, Minghong
    OPTICS LETTERS, 2016, 41 (07) : 1594 - 1597
  • [7] Water photolysis effect on the long-term stability of a fiber optic hydrogen sensor with Pt/WO3
    Zhong, Xuexiang
    Yang, Minghong
    Huang, Chujia
    Wang, Gaopeng
    Dai, Jixiang
    Bai, Wei
    SCIENTIFIC REPORTS, 2016, 6
  • [8] Study of a WO3 thin film based hydrogen gas sensor decorated with platinum nanoparticles
    Chang, Ching-Hong
    Chou, Tzu-Chieh
    Chen, Wei-Cheng
    Niu, Jing-Shiuan
    Lin, Kun-Wei
    Cheng, Shiou-Ying
    Tsai, Jung-Hui
    Liu, Wen-Chau
    SENSORS AND ACTUATORS B-CHEMICAL, 2020, 317
  • [9] Electron beam evaporated nanostructure WO3 films for gas sensor application
    Adilakshmi, G.
    Reddy, A. Sivasankar
    Reddy, P. Sreedhara
    Reddy, Ch. Seshendra
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2021, 273
  • [10] Ultrahigh sensitive NO sensor based on WO3 film with ppb-level sensitivity
    Yadav, Aditya
    Sharma, Anuj
    Baloria, Vishal
    Singh, Preetam
    Gupta, Govind
    CERAMICS INTERNATIONAL, 2023, 49 (05) : 7853 - 7860