Experimental production and identification of electron temperature gradient modes

被引:25
|
作者
Wei, X. [1 ]
Sokolov, V. [1 ]
Sen, A. K. [1 ]
机构
[1] Columbia Univ, Plasma Res Lab, New York, NY 10027 USA
基金
美国国家科学基金会;
关键词
Doppler shift; plasma diagnostics; plasma fluctuations; plasma instability; plasma ohmic heating; plasma transport processes; COLLISIONLESS; TRANSPORT;
D O I
10.1063/1.3381070
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The electron temperature gradient (ETG) mode, which is believed to be one of the strongest candidates for the anomalous electron energy transport in plasmas, is difficult to detect in experiments because of its high frequency (similar to MHz) and short wavelength (k(perpendicular to)rho(e)< 1). Using a dc bias heating scheme of the core plasma, we are able to produce a sufficiently strong ETG for exciting ETG modes in the Columbia linear machine [R. Scarmozzino, A. K. Sen, and G. A. Navratil, Phys. Fluids 31, 1773 (1988)]. A high frequency mode at similar to 2 MHz, with azimuthal wave numbers m similar to 14-16 and parallel wave number k parallel to(>)similar to 0.01 cm(-1), has been observed. The frequency range is consistent with the result of a kinetic dispersion relation of slab ETG modes with appropriate ExB Doppler shift. The scaling of its fluctuation level with the temperature gradient scale length and the radial structure are found to be roughly consistent with theoretical expectations. Therefore, this is one of the first direct definitive identifications of ETG modes.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Suppression of Electron Temperature Gradient Turbulence via Negative Magnetic Shear in NSTX
    Yuh, H. Y.
    Kaye, S. M.
    Levinton, F. M.
    Mazzucato, E.
    Mikkelsen, D. R.
    Smith, D. R.
    Bell, R. E.
    Hosea, J. C.
    LeBlanc, B. P.
    Peterson, J. L.
    Park, H. K.
    Lee, W.
    PHYSICAL REVIEW LETTERS, 2011, 106 (05)
  • [42] Evolution of the electron temperature gradient mode in plasmas containing vortex and shear flows
    Shi, Guifen
    Chen, Yinhua
    Yu, M. Y.
    Peng, Haiou
    Zheng, Jugao
    PHYSICA SCRIPTA, 2013, 88 (02)
  • [43] Theory of coupled whistler-electron temperature gradient mode in high beta plasma: Application to linear plasma device
    Singh, S. K.
    Awasthi, L. M.
    Singh, R.
    Kaw, P. K.
    Jha, R.
    Mattoo, S. K.
    PHYSICS OF PLASMAS, 2011, 18 (10)
  • [44] Analogous Saturation Mechanisms of the Ion and Electron Temperature Gradient Drift Wave Turbulence
    Sokolov, V.
    Sen, A. K.
    PHYSICAL REVIEW LETTERS, 2014, 113 (09)
  • [45] Study of turbulent fluctuations driven by the electron temperature gradient in the National Spherical Torus Experiment
    Mazzucato, E.
    Bell, R. E.
    Ethier, S.
    Hosea, J. C.
    Kaye, S. M.
    LeBlanc, B. P.
    Lee, W. W.
    Ryan, P. M.
    Smith, D. R.
    Wang, W. X.
    Wilson, J. R.
    Yuh, H.
    NUCLEAR FUSION, 2009, 49 (05)
  • [46] Impact of plasma parameter on self-organization of electron temperature gradient driven turbulence
    Kawai, C.
    Idomura, Y.
    Maeyama, S.
    Ogawa, Y.
    PHYSICS OF PLASMAS, 2017, 24 (04)
  • [47] Formation of coherent vortex streets and transport reduction in electron temperature gradient driven turbulence
    Nakata, M.
    Watanabe, T. -H.
    Sugama, H.
    Horton, W.
    PHYSICS OF PLASMAS, 2010, 17 (04)
  • [48] Identification of two mechanisms for current production in a biharmonic flashing electron ratchet
    Lau, Bryan
    Kedem, Ofer
    Ratner, Mark A.
    Weiss, Emily A.
    PHYSICAL REVIEW E, 2016, 93 (06)
  • [49] Perpendicular wavenumber dependence of the linear stability of global ion temperature gradient modes on E x B flows
    Hill, P.
    Saarelma, S.
    McMillan, B.
    Peeters, A.
    Verwichte, E.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2012, 54 (06)
  • [50] Experimental observation of turbulence transition and a critical gradient threshold for trapped electron mode in tokamak plasmas
    Zhong, W. L.
    Shi, Z. B.
    Yang, Z. J.
    Xiao, G. L.
    Yang, Z. C.
    Zhang, B. Y.
    Shi, P. W.
    Du, H. R.
    Pan, X. M.
    Zhou, R. B.
    Wan, L. H.
    Zou, X. L.
    Xu, M.
    Duan, X. R.
    Liu, Yong
    Zhuang, G.
    PHYSICS OF PLASMAS, 2016, 23 (06)