Experimental production and identification of electron temperature gradient modes

被引:25
|
作者
Wei, X. [1 ]
Sokolov, V. [1 ]
Sen, A. K. [1 ]
机构
[1] Columbia Univ, Plasma Res Lab, New York, NY 10027 USA
基金
美国国家科学基金会;
关键词
Doppler shift; plasma diagnostics; plasma fluctuations; plasma instability; plasma ohmic heating; plasma transport processes; COLLISIONLESS; TRANSPORT;
D O I
10.1063/1.3381070
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The electron temperature gradient (ETG) mode, which is believed to be one of the strongest candidates for the anomalous electron energy transport in plasmas, is difficult to detect in experiments because of its high frequency (similar to MHz) and short wavelength (k(perpendicular to)rho(e)< 1). Using a dc bias heating scheme of the core plasma, we are able to produce a sufficiently strong ETG for exciting ETG modes in the Columbia linear machine [R. Scarmozzino, A. K. Sen, and G. A. Navratil, Phys. Fluids 31, 1773 (1988)]. A high frequency mode at similar to 2 MHz, with azimuthal wave numbers m similar to 14-16 and parallel wave number k parallel to(>)similar to 0.01 cm(-1), has been observed. The frequency range is consistent with the result of a kinetic dispersion relation of slab ETG modes with appropriate ExB Doppler shift. The scaling of its fluctuation level with the temperature gradient scale length and the radial structure are found to be roughly consistent with theoretical expectations. Therefore, this is one of the first direct definitive identifications of ETG modes.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Using a local gyrokinetic code to study global ion temperature gradient modes in tokamaks
    Abdoul, P. A.
    Dickinson, D.
    Roach, C. M.
    Wilson, H. R.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2015, 57 (06)
  • [32] Electron temperature critical gradient and transport stiffness in DIII-D
    Smith, S. P.
    Petty, C. C.
    White, A. E.
    Holland, C.
    Bravenec, R.
    Austin, M. E.
    Zeng, L.
    Meneghini, O.
    NUCLEAR FUSION, 2015, 55 (08)
  • [33] Shear flow instabilities induced by trapped ion modes in collisionless temperature gradient turbulence
    Palermo, F.
    Garbet, X.
    Ghizzo, A.
    Cartier-Michaud, T.
    Ghendrih, P.
    Grandgirard, V.
    Sarazin, Y.
    PHYSICS OF PLASMAS, 2015, 22 (04)
  • [34] Electromagnetic instabilities and plasma turbulence driven by electron-temperature gradient
    Adkins, T.
    Schekochihin, A. A.
    Ivanov, P. G.
    Roach, C. M.
    JOURNAL OF PLASMA PHYSICS, 2022, 88 (04)
  • [35] Linear and nonlinear fluctuations of electron-temperature-gradient driven mode and electron acoustic mode in a two-electron temperature nonthermal magnetized plasma
    Razzaq, Javaria
    Qamar-ul-Haque
    Nargis, Shahida
    Mirza, Arshad M.
    CONTRIBUTIONS TO PLASMA PHYSICS, 2021, 61 (01)
  • [36] Measurements of the cross-phase angle between density and electron temperature fluctuations and comparison with gyrokinetic simulations
    White, A. E.
    Peebles, W. A.
    Rhodes, T. L.
    Holland, C. H.
    Wang, G.
    Schmitz, L.
    Carter, T. A.
    Hillesheim, J. C.
    Doyle, E. J.
    Zeng, L.
    McKee, G. R.
    Staebler, G. M.
    Waltz, R. E.
    DeBoo, J. C.
    Petty, C. C.
    Burrell, K. H.
    PHYSICS OF PLASMAS, 2010, 17 (05)
  • [37] Effects of parallel ion motion on electromagnetic toroidal ion temperature gradient modes in a fluid model
    Jarmen, A.
    Anderson, J.
    Malinov, P.
    PHYSICS OF PLASMAS, 2015, 22 (08)
  • [38] An expression for the temperature gradient in chaotic fields
    Hudson, S. R.
    PHYSICS OF PLASMAS, 2009, 16 (01)
  • [39] Fine-scale zonal flow suppression of Electron Temperature Gradient turbulence
    Parker, S. E.
    Kohut, J. J.
    Chen, Y.
    Lin, Z.
    Hinton, F. L.
    Lee, W. W.
    THEORY OF FUSION PLASMAS, 2006, 871 : 193 - +
  • [40] Effects of parallel dynamics on vortex structures in electron temperature gradient driven turbulence
    Nakata, M.
    Watanabe, T. -H.
    Sugama, H.
    Horton, W.
    PHYSICS OF PLASMAS, 2011, 18 (01)