Experimental production and identification of electron temperature gradient modes

被引:25
|
作者
Wei, X. [1 ]
Sokolov, V. [1 ]
Sen, A. K. [1 ]
机构
[1] Columbia Univ, Plasma Res Lab, New York, NY 10027 USA
基金
美国国家科学基金会;
关键词
Doppler shift; plasma diagnostics; plasma fluctuations; plasma instability; plasma ohmic heating; plasma transport processes; COLLISIONLESS; TRANSPORT;
D O I
10.1063/1.3381070
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The electron temperature gradient (ETG) mode, which is believed to be one of the strongest candidates for the anomalous electron energy transport in plasmas, is difficult to detect in experiments because of its high frequency (similar to MHz) and short wavelength (k(perpendicular to)rho(e)< 1). Using a dc bias heating scheme of the core plasma, we are able to produce a sufficiently strong ETG for exciting ETG modes in the Columbia linear machine [R. Scarmozzino, A. K. Sen, and G. A. Navratil, Phys. Fluids 31, 1773 (1988)]. A high frequency mode at similar to 2 MHz, with azimuthal wave numbers m similar to 14-16 and parallel wave number k parallel to(>)similar to 0.01 cm(-1), has been observed. The frequency range is consistent with the result of a kinetic dispersion relation of slab ETG modes with appropriate ExB Doppler shift. The scaling of its fluctuation level with the temperature gradient scale length and the radial structure are found to be roughly consistent with theoretical expectations. Therefore, this is one of the first direct definitive identifications of ETG modes.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Electron-scale turbulence characteristics with varying electron temperature gradient in LHD
    Nasu, T.
    Tokuzawa, T.
    Nakata, M.
    Ida, K.
    Inagaki, S.
    Nishiura, M.
    Yoshimura, Y.
    Yanai, R.
    Tanaka, K.
    Yoshinuma, M.
    Kobayashi, T.
    Ejiri, A.
    Watanabe, K. Y.
    Yamada, I.
    NUCLEAR FUSION, 2024, 64 (09)
  • [22] Simultaneous measurement of core electron temperature and density fluctuations during electron cyclotron heating on DIII-D
    White, A. E.
    Schmitz, L.
    Peebles, W. A.
    Rhodes, T. L.
    Carter, T. A.
    McKee, G. R.
    Shafer, M. W.
    Staebler, G. M.
    Burrell, K. H.
    DeBoo, J. C.
    Prater, R.
    PHYSICS OF PLASMAS, 2010, 17 (02)
  • [23] Linear interaction and relative role of the ion temperature gradient and trapped electron modes in the reactor-relevant finite beta plasma condition
    Kim, J. Y.
    Han, H. S.
    PHYSICS OF PLASMAS, 2017, 24 (07)
  • [24] Validation of electron temperature gradient turbulence in the Columbia Linear Machine
    Fu, X. R.
    Horton, W.
    Xiao, Y.
    Lin, Z.
    Sen, A. K.
    Sokolov, V.
    PHYSICS OF PLASMAS, 2012, 19 (03)
  • [25] Electromagnetic electron temperature gradient driven instability in toroidal plasmas
    Zielinski, J.
    Smolyakov, A. I.
    Beyer, P.
    Benkadda, S.
    PHYSICS OF PLASMAS, 2017, 24 (02)
  • [26] Minimal dynamic model for electron-temperature-gradient turbulence
    Peng, X. D.
    Tang, C. J.
    Qiu, X. M.
    PHYSICS OF PLASMAS, 2007, 14 (01)
  • [27] Soliton formation in electron-temperature-gradient-driven magnetoplasma
    Khan, M. Yaqub
    Iqbal, Javed
    PLASMA SCIENCE & TECHNOLOGY, 2018, 20 (02)
  • [28] Stabilization of trapped electron mode through effective diffusion in electron temperature gradient turbulence
    Watanabe, T. -h.
    Maeyama, S.
    Nakata, M.
    NUCLEAR FUSION, 2023, 63 (05)
  • [29] Excitation of Zonal Flows by ion-temperature-gradient Modes Excited by the Fluid Resonance
    Wang Guan-Qiong
    Ma Jun
    Weiland, J.
    Zagorodny, A.
    CHINESE PHYSICS LETTERS, 2015, 32 (11)
  • [30] Secondary instability of electromagnetic ion-temperature-gradient modes for zonal flow generation
    Anderson, Johan
    Nordman, Hans
    Singh, Rameswar
    Singh, Raghvendra
    PHYSICS OF PLASMAS, 2011, 18 (07)