A HYBRID CLUSTERING ALGORITHM COMBINING CLOUD MODEL IWO AND K-MEANS

被引:17
|
作者
Pan, Guo [1 ]
Li, Kenli [1 ]
Ouyang, Aijia [1 ]
Zhou, Xu [1 ]
Xu, Yuming [1 ]
机构
[1] Hunan Univ, Coll Informat Sci & Engn, Changsha 410082, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Cloud model; invasive weed optimization (IWO); K-means; clustering; hybrid algorithm; WEED OPTIMIZATION ALGORITHM; GENETIC ALGORITHM; DESIGN;
D O I
10.1142/S0218001414500153
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In order to overcome the drawbacks of the K-means (KM) for clustering problems such as excessively depending on the initial guess values and easily getting into local optimum, a clustering algorithm of invasive weed optimization (IWO) and KM based on the cloud model has been proposed in the paper. The so-called cloud model IWO (CMIWO) is adopted to direct the search of KM algorithm to ensure that the population has a definite evolution direction in the iterative process, thus improving the performance of CMIWO K-means (CMIWOKM) algorithm in terms of convergence speed, computing precision and algorithm robustness. The experimental results show that the proposed algorithm has such advantages as higher accuracy, faster constringency, and stronger stability.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] A hybrid clustering technique combining a novel genetic algorithm with K-Means
    Rahman, Md Anisur
    Islam, Md Zahidul
    KNOWLEDGE-BASED SYSTEMS, 2014, 71 : 345 - 365
  • [2] Clustering Algorithm Combining CPSO with K-Means
    Gu, Chunqin
    Tao, Qian
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCES IN MECHANICAL ENGINEERING AND INDUSTRIAL INFORMATICS, 2015, 15 : 749 - 755
  • [3] The MinMax k-Means clustering algorithm
    Tzortzis, Grigorios
    Likas, Aristidis
    PATTERN RECOGNITION, 2014, 47 (07) : 2505 - 2516
  • [4] Modified k-Means Clustering Algorithm
    Patel, Vaishali R.
    Mehta, Rupa G.
    COMPUTATIONAL INTELLIGENCE AND INFORMATION TECHNOLOGY, 2011, 250 : 307 - +
  • [5] An improved K-means clustering algorithm
    Huang, Xiuchang
    Su, Wei
    Journal of Networks, 2014, 9 (01) : 161 - 167
  • [6] Improved Algorithm for the k-means Clustering
    Zhang, Sheng
    Wang, Shouqiang
    PROCEEDINGS OF THE 10TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA 2012), 2012, : 4717 - 4720
  • [7] Adaptive K-Means clustering algorithm
    Chen, Hailin
    Wu, Xiuqing
    Hu, Junhua
    MIPPR 2007: PATTERN RECOGNITION AND COMPUTER VISION, 2007, 6788
  • [8] Representing the New Model for Improving K-Means Clustering Algorithm based on Genetic Algorithm
    Maghsoudi, Rouhollah
    Delavar, Arash Ghorbannia
    Hoseyny, Somayye
    Asgari, Rahmatollah
    Heidari, Yaghub
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2011, 2 (02): : 329 - 336
  • [9] An Enhancement of K-means Clustering Algorithm
    Gu, Jirong
    Zhou, Jieming
    Chen, Xianwei
    2009 INTERNATIONAL CONFERENCE ON BUSINESS INTELLIGENCE AND FINANCIAL ENGINEERING, PROCEEDINGS, 2009, : 237 - 240
  • [10] Unsupervised K-Means Clustering Algorithm
    Sinaga, Kristina P.
    Yang, Miin-Shen
    IEEE ACCESS, 2020, 8 : 80716 - 80727