A Review of Dynamic Modeling Approaches and Their Application in Computational Strain Optimization for Metabolic Engineering

被引:56
|
作者
Kim, Osvaldo D. [1 ,2 ]
Rocha, Miguel [2 ]
Maia, Paulo [1 ]
机构
[1] SilicoLife Lda, Braga, Portugal
[2] Univ Minho, Ctr Biol Engn, Braga, Portugal
来源
FRONTIERS IN MICROBIOLOGY | 2018年 / 9卷
关键词
dynamic modeling; strain optimization; phenotype prediction; metabolic engineering; hybrid modeling; CENTRAL CARBON METABOLISM; CONSTRAINT-BASED MODELS; FLUX BALANCE ANALYSIS; PARAMETER-ESTIMATION; SYSTEMS BIOLOGY; IDENTIFIABILITY ANALYSIS; BIOCHEMICAL NETWORKS; KINETIC-MODELS; RATE LAWS; GROWTH;
D O I
10.3389/fmicb.2018.01690
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Mathematical modeling is a key process to describe the behavior of biological networks. One of the most difficult challenges is to build models that allow quantitative predictions of the cells' states along time. Recently, this issue started to be tackled through novel in silico approaches, such as the reconstruction of dynamic models, the use of phenotype prediction methods, and pathway design via efficient strain optimization algorithms. The use of dynamic models, which include detailed kinetic information of the biological systems, potentially increases the scope of the applications and the accuracy of the phenotype predictions. New efforts in metabolic engineering aim at bridging the gap between this approach and other different paradigms of mathematical modeling, as constraint-based approaches. These strategies take advantage of the best features of each method, and deal with the most remarkable limitation-the lack of available experimental information-which affects the accuracy and feasibility of solutions. Parameter estimation helps to solve this problem, but adding more computational cost to the overall process. Moreover, the existing approaches include limitations such as their scalability, flexibility, convergence time of the simulations, among others. The aim is to establish a trade-off between the size of the model and the level of accuracy of the solutions. In this work, we review the state of the art of dynamic modeling and related methods used for metabolic engineering applications, including approaches based on hybrid modeling. We describe approaches developed to undertake issues regarding the mathematical formulation and the underlying optimization algorithms, and that address the phenotype prediction by including available kinetic rate laws of metabolic processes. Then, we discuss how these have been used and combined as the basis to build computational strain optimization methods for metabolic engineering purposes, how they lead to bi-level schemes that can be used in the industry, including a consideration of their limitations.
引用
收藏
页数:22
相关论文
共 24 条
  • [21] A mathematical framework for yield (vs. rate) optimization in constraint-based modeling and applications in metabolic engineering
    Klamt, Steffen
    Mueller, Stefan
    Regensburger, Georg
    Zanghellini, Juergen
    METABOLIC ENGINEERING, 2018, 47 : 153 - 169
  • [22] The Potential of Hybrid Mechanistic/Data-Driven Approaches for Reduced Dynamic Modeling: Application to Distillation Columns
    Schaefer, Pascal
    Caspari, Adrian
    Schweidtmann, Artur M.
    Vaupel, Yannic
    Mhamdi, Adel
    Mitsos, Alexander
    CHEMIE INGENIEUR TECHNIK, 2020, 92 (12) : 1910 - 1920
  • [23] Construction of the new Escherichia coli K-12 MG 1655 novel strain with improved growth characteristics for application in metabolic engineering
    I. V. Biryukova
    A. A. Krylov
    E. M. Kiseleva
    N. I. Minaeva
    S. V. Mashko
    Russian Journal of Genetics, 2010, 46 : 308 - 314
  • [24] Analysis and future perspectives for the application of Dynamic Real-Time Optimization to solar thermal plants: A review
    Untrau, Alix
    Sochard, Sabine
    Marias, Frederic
    Reneaume, Jean-Michel
    Le Roux, Galo A. C.
    Serra, Sylvain
    SOLAR ENERGY, 2022, 241 : 275 - 291