Improved bound for the bilinear Bochner-Riesz operator

被引:11
作者
Jeong, Eunhee [1 ]
Lee, Sanghyuk [1 ]
Vargas, Ana [2 ]
机构
[1] Seoul Natl Univ, Dept Math Sci, Seoul 151747, South Korea
[2] Univ Autonoma Madrid, Dept Math, E-28049 Madrid, Spain
关键词
OSCILLATORY INTEGRALS; RESTRICTION; MULTIPLIERS; BOUNDEDNESS;
D O I
10.1007/s00208-018-1696-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study L-p x L-q -> L-r bounds for the bilinear Bochner- Riesz operator B-alpha, alpha > 0 in R-d, d >= 2, which is defined by B-alpha (f, g) = integral integral(e2 pi ix.(xi+n))(RdxRd)(1-vertical bar xi vertical bar(2)-vertical bar eta vertical bar(2))(alpha)+(f) over cap(xi)(g) over cap(eta)d xi d eta. We make use of a decomposition which relates the estimates for Ba to the square function estimates for the classical Bochner-Riesz operators. In consequence, we significantly improve the previously known bounds.
引用
收藏
页码:581 / 609
页数:29
相关论文
共 38 条
[11]   RADIAL FOURIER MULTIPLIERS OF LP(R2) [J].
CARBERY, A ;
GASPER, G ;
TREBELS, W .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-PHYSICAL SCIENCES, 1984, 81 (10) :3254-3255
[12]   OSCILLATORY INTEGRALS AND A MULTIPLIER PROBLEM FOR DISK [J].
CARLESON, L ;
SJOLIN, P .
STUDIA MATHEMATICA, 1972, 44 (03) :287-&
[13]   Sharp Lp-Lq estimates for Bochner-Riesz operators of negative index in Rn, n ≥ 3 [J].
Cho, Y ;
Kim, Y ;
Lee, S ;
Shim, Y .
JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 218 (01) :150-167
[15]   COMMUTATORS OF SINGULAR INTEGRALS AND BILINEAR SINGULAR INTEGRALS [J].
COIFMAN, RR ;
MEYER, Y .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 212 (OCT) :315-331
[16]   MULTILINEAR SINGULAR OPERATORS WITH FRACTIONAL RANK [J].
Demeter, Ciprian ;
Pramanik, Malabika ;
Thiele, Christoph .
PACIFIC JOURNAL OF MATHEMATICS, 2010, 246 (02) :293-324
[17]  
Demeter C, 2010, AM J MATH, V132, P201
[18]   Unboundedness of the ball bilinear multiplier operator [J].
Diestel, Geoff ;
Grafakos, Loukas .
NAGOYA MATHEMATICAL JOURNAL, 2007, 185 :151-159
[19]   INEQUALITIES FOR STRONGLY SINGULAR CONVOLUTION OPERATORS [J].
FEFFERMAN, C .
ACTA MATHEMATICA UPPSALA, 1970, 124 (1-2) :9-+
[20]  
FEFFERMAN C, 1971, ANN MATH, V94, P331