Improved bound for the bilinear Bochner-Riesz operator

被引:11
作者
Jeong, Eunhee [1 ]
Lee, Sanghyuk [1 ]
Vargas, Ana [2 ]
机构
[1] Seoul Natl Univ, Dept Math Sci, Seoul 151747, South Korea
[2] Univ Autonoma Madrid, Dept Math, E-28049 Madrid, Spain
关键词
OSCILLATORY INTEGRALS; RESTRICTION; MULTIPLIERS; BOUNDEDNESS;
D O I
10.1007/s00208-018-1696-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study L-p x L-q -> L-r bounds for the bilinear Bochner- Riesz operator B-alpha, alpha > 0 in R-d, d >= 2, which is defined by B-alpha (f, g) = integral integral(e2 pi ix.(xi+n))(RdxRd)(1-vertical bar xi vertical bar(2)-vertical bar eta vertical bar(2))(alpha)+(f) over cap(xi)(g) over cap(eta)d xi d eta. We make use of a decomposition which relates the estimates for Ba to the square function estimates for the classical Bochner-Riesz operators. In consequence, we significantly improve the previously known bounds.
引用
收藏
页码:581 / 609
页数:29
相关论文
共 38 条
[1]  
[Anonymous], 1970, SINGULAR INTEGRALS D
[2]   Sharp estimates for the Bochner-Riesz operator of negative order in R-2 [J].
Bak, JG .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (07) :1977-1986
[3]   Reconstruction of singularities from full scattering data by new estimates of bilinear Fourier multipliers [J].
Barcelo, J. A. ;
Faraco, D. ;
Ruiz, A. ;
Vargas, A. .
MATHEMATISCHE ANNALEN, 2010, 346 (03) :505-544
[4]  
Bényi A, 2004, MATH RES LETT, V11, P1
[5]   THE BILINEAR BOCHNER-RIESZ PROBLEM [J].
Bernicot, Frederic ;
Grafakos, Loukas ;
Song, Liang ;
Yan, Lixin .
JOURNAL D ANALYSE MATHEMATIQUE, 2015, 127 :179-217
[6]   Boundedness of bilinear multipliers whose symbols have a narrow support [J].
Bernicot, Frederic ;
Germain, Pierre .
JOURNAL D ANALYSE MATHEMATIQUE, 2013, 119 :165-212
[7]   ESTIMATES FOR THE BOCHNER-RIESZ OPERATOR WITH NEGATIVE INDEX [J].
BORJESON, L .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1986, 35 (02) :225-233
[8]  
Bourgain J., 1991, Geom. Funct. Anal., V1, P147
[9]   BOUNDS ON OSCILLATORY INTEGRAL OPERATORS BASED ON MULTILINEAR ESTIMATES [J].
Bourgain, Jean ;
Guth, Larry .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2011, 21 (06) :1239-1295
[10]   THE BOUNDEDNESS OF THE MAXIMAL BOCHNER-RIESZ OPERATOR ON L4(R2) [J].
CARBERY, A .
DUKE MATHEMATICAL JOURNAL, 1983, 50 (02) :409-416