QUANTITATIVE RIGIDITY RESULTS FOR CONFORMAL IMMERSIONS

被引:5
作者
Lamm, Tobias [1 ]
Huy The Nguyen [2 ]
机构
[1] Karlsruhe Inst Technol, Inst Anal, D-76133 Karlsruhe, Germany
[2] Univ Queensland, Sch Math & Phys, Brisbane, Qld 4072, Australia
关键词
GEOMETRIC RIGIDITY; COMPLETE-SURFACES; MINIMAL SURFACES; WILLMORE; 3-MANIFOLDS; MINIMIZERS; EXISTENCE; THEOREM;
D O I
10.1353/ajm.2014.0033
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove several quantitative rigidity results for conformal immersions of surfaces in R-n with bounded total curvature. We show that (branched) conformal immersions which are close in energy to either a round sphere, a conformal Clifford torus, an inverted catenoid, an inverted Enneper's minimal surface or an inverted Chen's minimal graph must be close to these surfaces in the W-2,W-2-norm. Moreover, we apply these results to prove a corresponding rigidity result for complete, connected and non-compact surfaces.
引用
收藏
页码:1409 / 1440
页数:32
相关论文
共 42 条
[1]  
[Anonymous], 1979, BOL SOC BRAS MAT, DOI DOI 10.1007/BF02588341
[2]  
[Anonymous], 2002, CAMBRIDGE TRACTS MAT
[3]  
[Anonymous], 1996, LECT MATH ETH ZURICH
[4]  
[Anonymous], 1991, 2 DIMENSIONAL GEOMET
[5]  
[Anonymous], PREPRINT
[6]  
Bauer M, 2003, INT MATH RES NOTICES, V2003, P553
[7]   BUBBLE TREE OF BRANCHED CONFORMAL IMMERSIONS AND APPLICATIONS TO THE WILLMORE FUNCTIONAL [J].
Chen, Jingyi ;
Li, Yuxiang .
AMERICAN JOURNAL OF MATHEMATICS, 2014, 136 (04) :1107-1154
[8]   A C0 estimate for nearly umbilical surfaces [J].
De Lellis, C ;
Müller, S .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2006, 26 (03) :283-296
[9]  
De Lellis C, 2005, J DIFFER GEOM, V69, P75
[10]   Almost-Schur lemma [J].
De Lellis, Camillo ;
Topping, Peter M. .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2012, 43 (3-4) :347-354